
The Evolution of CIRCA, a Theory-Based AI Architecture with Real-Time
Performance Guarantees

David J. Musliner, Michael J. S. Pelican
Honeywell Laboratories

{david.musliner,mike.pelican}@honeywell.com

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Kurt D. Krebsbach
Lawrence University

kurt.krebsbach@lawrence.edu

Edmund H. Durfee
University of Michigan

durfee@umich.edu

Abstract

This paper summarizes the evolution of our research
on the Cooperative Intelligent Real-Time Control Archi-
tecture (CIRCA), one of the first AI architectures de-
signed specifically for hard-real-time environments and
architecturally-enforced performance guarantees. Beginning
with the objective of providing reliable real-time execution of
automatically-generated plans, CIRCA research progressed
to define a rigorous link between planning models, execution
semantics, and performance guarantees. Formal verification
techniques and automatic abstraction methods were then in-
corporated to improve the rigor and performance of the plan-
ning system. Multi-agent negotiation and coordination capa-
bilities were developed to demonstrate performance guaran-
tees spanning distributed CIRCA agents. As the limitations
of CIRCA’s fully-guaranteed semantics became clear, the re-
search grew to include probabilistic versions of the problem
and new solution methods. Versions of CIRCA are capable
of reasoning about durative concurrent actions, exogenous
events and adversaries, nondeterministic actions, and prob-
abilistic actions and events.

Introduction
This paper provides a brief overview of the research to
date that has focused on CIRCA, the Cooperative Intelli-
gent Real-Time Control Architecture. CIRCA is one of the
first fully-implemented AI planning and execution architec-
tures that supports hard real-time performance guarantees.
CIRCA research has explored a broad spectrum of related
areas including reliable plan execution semantics, adversar-
ial reasoning, heuristic search guidance, the link between
formal verification and planning, meta-control of deliber-
ation in time-constrained domains, probabilistic planning,
and multi-agent planning and coordination. In this paper
we show how these topics tie together and relate to the gen-
eral problem of building embeddable intelligent systems that
provide formal, provable properties while retaining the com-
plex, unpredictable elements of state of the art intelligent
planning and scheduling algorithms.

CIRCA’s performance guarantees are constructed and en-
forced by components that are based on an underlying theory
of reactive plan execution; the theory describes how planned

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Scheduler

reaction
schedules

selected
reactions

Mission Planner

World Model

AI Subsystem

State-Space Planner

planningplanning
feedback problems

reaction schedules

feedback data

sensor data

Environment

control
signals

Real-Time Subsystem

Figure 2: The CIRCA architecture combines intelligent
planning and adaptation with real-time perfor-
mance guarantees.

reactions interact with an external world (including external
sources of change). The CIRCA executive is carefully de-
signed and implemented to enforce the semantics of the plan
execution theory. Most of the CIRCA capabilities described
in this paper are still active and available in the current code-
base, so we describe them in the present tense, even though
some were developed more than 15 years ago.

Classic CIRCA
In the beginning, we were mainly interested in automatically
building real-time control plans to control things like robots
in dangerous and adversarial environments. The key aspect
of such domains is the potential for catastrophic failure—
if the controlled agent (e.g., a UAV) does not respond to
some threat (e.g., a surface-to-air missile launch) within a
certain time limit, then it risks failing completely. So “Clas-
sic” CIRCA is designed to reason about such domains and
automatically build and execute reactions that defeat such
threats (Musliner, Durfee, & Shin 1993; 1995).

CIRCA Architecture

CIRCA is an autonomous, self-adaptive control architec-
ture designed specifically for mission-critical domains. As
illustrated in Figure 2, CIRCA combines on-line planning
and scheduling systems in its AI Subsystem (AIS) with a
very simple, very predictable real-time plan executive (the



Non-Deterministic Probabilistic

Planning Reactions:

Formal Verification:
Kronos verifier interface

CIRCA-Specific Verifier

Dynamic Abstraction

Relaxed-plan heuristics GA TAP generation

Sampling-based verification

Trace-directed backjumping

Tempastic

1990 2000 2005

CIRCADIA

Meta-control

Real-time preemption model

Figure 1: For over 15 years, CIRCA research has explored numerous topics related to real-time intelligent control based on
theoretically-grounded performance guarantees.

Real-Time Subsystem, or RTS). CIRCA dynamically cre-
ates time-constrained reactive control plans (cyclic loops of
Test-Action Pairs, or TAPs) based on its expectations about
future world states and its own potential actions.

The RTS is responsible for executing TAP plans in a com-
pletely predictable fashion, so that their execution matches
the model used by the AIS. The RTS meets this criterion for
TAP execution because it has no other function; it simply
loops over the cyclic schedule of TAPs, testing and execut-
ing them repeatedly. Even communication into and out of
the RTS is encapsulated within TAPs, so that all RTS activ-
ity is scheduled explicitly.

The Planner and Scheduler, on the other hand, perform the
complex, unpredictable reasoning required to develop guar-
anteed control plans, and the performance of these subsys-
tems must not interfere with the RTS’ predictable execution.
To achieve this isolation, each control plan executed on the
RTS is designed both to achieve system goals and to ensure
system safety throughout the range of environmental states
that are anticipated during and after the accomplishment of
the goals. So the RTS keeps the system safe while the Plan-
ner and Scheduler try to build the next control plan; the plan-
ning operation isnot constrained to meet domain deadlines.

CIRCA Theory

The full details of the underlying CIRCA theory and execu-
tive design are beyond the scope of this paper, but are avail-
able in several other publications. An intuitive treatment
of the theory and executive design is available in (Musliner
1993), while (Goldman, Musliner, & Pelican 2002) provides
a more formal description in terms of timed automata. Here
we briefly overview the theory underlying CIRCA’s perfor-
mance guarantees, to set the context for describing the ar-
chitectural evolution.

Unlike most planning and scheduling systems that build
plans as linear or partially-ordered action sequences, CIRCA
builds plans that are actually reactivecontrollers, designed
to sense and react to different world states (situations) within
strictly-enforced time bounds. Each TAP has a boolean test
expression that distinguishes between states where a particu-
lar action is and is not to be executed, and a timing constraint
specifying the maximum time allowable between TAP exe-
cutions. In this context, a “state” is a particular assignment
of values to features or variables that describe the world and

#<TAP 2>
Tests: (AND (IRU1 BROKEN)
(OR (AND (ACTIVE_IRU NONE) (IRU2 ON))

(AND (ACTIVE_IRU IRU1) (ENGINE ON))))
Action: select_IRU2
Max-delay: 2 seconds

TAP 2 TAP 1 TAP 3 TAP 1TAP 1 TAP 4

Figure 3: A sample Test-Action Pair and TAP schedule
loop from a sample domain controlling redun-
dant spacecraft inertial reference units (IRUs).

which can be sensed by the CIRCA-controlled agent. A
sample TAP and an associated TAP schedule loop are shown
in Figure 3. When executing a TAP, the RTS evaluates the
test expression and, if it returns true, the RTS executes the
corresponding action. CIRCA’s Scheduler module uses the
TAP timing requirements when it builds looping TAP sched-
ules.

The world model and planning algorithm that the AIS
uses to develop TAP plans are detailed in (Musliner, Dur-
fee, & Shin 1995). For our purposes, it is sufficient to un-
derstand that the model is a modified state/transition graph
in which states correspond to complete descriptions of the
world (modulo some level of abstraction), and three types of
transitions represent the ways the world can change.Tem-
poral transitionsrepresent time and ongoing processes. The
timing behavior of a temporal transition is related to the rate
of the process it represents: for example, the process of acti-
vating a spacecraft’s inertial reference unit may take some
minimum amount of time to complete.Event transitions
represent occurrences outside the agent’s control, whileac-
tion transitionsrepresent the intentional actions that can be
taken by TAPs. Transitions have precondition and postcon-
dition expressions that describe how they can link together
states in the planned world model. CIRCA can control the
timing behavior of action transitions by setting the timing
constraints of the TAPs it builds.

To build plans, CIRCA begins with a set of goal descrip-
tions, a set of initial world states, and a set of transition de-
scriptions that detail the types of events, actions, and pro-
cesses possible in the world. Some of the transitions are



identified as leading to a distinguished failure state, and
CIRCA must build a TAP plan that makes failure unreach-
able while also doing its best to achieve the other goal con-
ditions. The basic planning algorithm conducts a fairly stan-
dard type of heuristically-guided forward search with back-
tracking, expanding the set of reachable states by applying
the uncontrollable temporal and event transitions and decid-
ing on an action choice for each state. An action can be
planned topreemptundesirable transitions (e.g., temporal
transitions to failure) by constraining the action to execute
quickly enough to definitely occur before the undesirable
transition could possibly occur. This notion of preemptionis
the core aspect of CIRCA planning that allows the system to
reason about real-time performance guarantees and system
safety.

World Model
Several key aspects of this real-time planning and con-
trol problem distinguish Classic CIRCA from most AI sys-
tems1, including:

• Exogenous Events —Unlike most planning systems,
CIRCA considers exogenous sources of change in its en-
vironment, including adversaries. Because the focus is on
making real-time safety guarantees, all exogenous processes
and events are assumed to possibly happen at any time they
could— in fact, the system takes Murphy’s Law to the ex-
treme, expecting that anything bad thatcanhappenwill hap-
pen, at the worst possible time.
• Time and Preemption — CIRCA tries to build plans
that prevent failures through one primary mechanism: dis-
abling the preconditions that allow an adversary (or the envi-
ronment) to cause a failure. In addition to handling the log-
ical elements of this sort of planning, CIRCA also must en-
sure that its safety-preserving actions will be taken quickly
enough. In other words, CIRCA has to ensure that the right
action is taken at the right time, and this timing may be
dictated in part by consideration of the uncontrollable envi-
ronment/adversaries. Unlike most temporal planning mod-
els, CIRCA does not label state with specific times; instead,
it uses a purely relative (and non-Markov) temporal model
that allows the system to compactly represent continuously-
executing control loops (e.g., as long as you’re flying, any
time someone shoots a radar-guided missile at you, deploy
chaff and begin evasive maneuvers).
• Nondeterministic Actions — CIRCA’s action models
can be nondeterministic, having multiple sets of postcondi-
tions. For example, the model of astart-engine action
may either result in the engine being started or not. Com-
bining the unique CIRCA temporal model with the notion of
indexical-functional variables (Agre & Chapman 1987) and
nondeterministic actions allows CIRCA to efficiently reason
about looping plans (reactive controllers) without overly-
precise models of system dynamics (e.g., to hammer in a
nail, keep hitting it until it is flush) (Musliner 1994b).

1See (Muslineret al. 1995) for an overview of Real-Time AI
approaches.

• Continuous Embedded Operation — CIRCA is also
designed to persist through changing missions that cannot be
entirely pre-planned, so planning and execution occur con-
currently and new plans need to be sent down to the RTS
and begin execution without sacrificing the system’s safety
guarantees. Thus CIRCA can reason explicitly about the
safe transfer of control between two different reactive con-
trollers, implemented by different TAP schedules.

Formal Verification
CIRCA’s world model is non-Markovian in the sense that
the abstracted temporal model means that the path of tran-
sitions followed to reach a state can affect which transitions
are possible out of that state, because of delays. For ex-
ample, preempting a temporal transition to failure from one
state may not disable that failure transition, but instead lead
to a new state where it is still applicable; in this case the pro-
cess represented by that temporal transition will have contin-
ued to run, so the safe time remaining in the new state is re-
duced. Naturally, this complicates the process of reasoning
about the temporal model, and motivates our use of formal
model checking to verify the required preemption proper-
ties that are necessary to ensure that a plan is guaranteed to
avoid failure and keep the system safe (Musliner, Goldman,
& Pelican 2000).

Each time the CIRCA SSP makes a heuristic decision
about what action should be taken in a state, it uses a ver-
ifier to confirm that failure is not reachable and that all the
planned preemptions will occur as expected. This means
that the verifier will be invoked before the plan (controller)
is complete. At such points we use the verifier as a con-
servative heuristic by treating all unplanned states as if they
are “safe havens.” Unplanned states are treated as absorbing
states of the system, and any verification traces that enter
these states are regarded as successful. Note that this pro-
cess converges to a sound and complete verification when
the controller synthesis process is complete.

Incremental Verification: Our earliest efforts to incor-
porate model checking verifiers used off-the-shelf systems
such as Kronos (Yovine 1998). However, because those
systems are designed for batch verification of system de-
signs, they are tremendously inefficient when used in the
inner loop of the CIRCA planning engine, completely re-
building their verification traces as each new action decision
was made. Therefore, we implemented a CIRCA-Specific
Verifier (CSV) that takes advantage of several key aspects
of the CIRCA planning problem and is fully incremental.
The CSV system can be orders of magnitude faster than the
Kronos-based approach, without sacrificing verification ac-
curacy or precision (in fact, the CSV has a more accurate
model of the executive’s behavior than the atrophied Kronos
interface).

Trace-Directed Backjumping: When the verifier finds
that the distinguished failure state is reachable, it can re-
turn a trace illustrating a path to failure. By mapping this



failure trace onto the search stack choice points, CIRCA can
pinpoint the decisions that are responsible for failure, and
backjumpto revise the most recent implicated decision. This
backjumping avoids revisiting more-recent but irrelevantde-
cisions, and can considerably improve the efficiency of the
searchwithout sacrificing completeness.

Heuristic Search
Despite its temporal abstractions and other advantages, the
CIRCA state space is highly exponential and explodes
quickly. Our efforts to manage this complexity have resulted
in several research contributions:

• Plan Graphs for non-Closed-World Models — As
with all state-space searches, heuristic guidance is critical.
Fortunately, the early work on plan-graph (or “relaxed
plan”) heuristics occurred just as CIRCA matured. Based
on McDermott’s original work (McDermott 1999), we
developed our own planning graph heuristic that combined
the now-standard relaxation/abstraction elements (e.g., ig-
noring negative interactions) with CIRCA-specific elements
including nondeterministic outcomes and exogenous events.
• Dynamic Abstraction Planning (DAP) — The intuition
behind DAP is simple: in some situations, certain world fea-
tures are important, while in other situations those same fea-
tures are not important (Goldmanet al. 1997). By represent-
ing only the important features, DAP allows CIRCA to avoid
enumerating many unique but functionally-equivalentstates.
DAP begins with a maximally abstract world model (only
distinguishing failure and non-failure states) and incremen-
tally adds more information to a state’s representation when
necessary to improve the plan. By automatically selecting
the appropriate level of abstraction at each step during the
planning process, DAP can significantly reduce the size of
the search space.
• Bad Smell — Even with backjumping, the SSP might
waste time repeatedly attempting to find a solution for
“failed” states. Note that, because CIRCA’s state space
model has non-Markov temporal semantics, the action
choices (including reaction timing) that may occur before
a failed state can be the cause of an anticipated failure, and
it may be possible to revise those earlier action decisions in
a way that makes a “failed” state no longer a failure. So
these states should not be completely eliminated from the
search for a good plan. For this reason, we wanted to con-
trol the SSP search so that it would try to avoid states that
had previously failed. We gave such states a “bad smell,”
so that the planner would prefer actions that avoided them
wherever possible. This mechanism and its motivation are
roughly analogous to aspects of Tabu search (Glover & La-
guna 1993).

TAP Scheduling
The CIRCA TAP scheduling problem is fairly simple, but
it has two unique aspects. First and foremost, the tasks be-
ing scheduled are automatically generated, so they are not
as well-organized and optimized as human-generated tasks
might be. One simple but confounding result is that TAP

timing specifications do not fall on simple harmonic fre-
quencies, so the least common multiple (LCM) of the TAP
periods is generally extremely large. As a result, traditional
schedulers that attempt to schedule calendars of task execu-
tions out to the LCM of the task periods (such as the Maruti
scheduler (Leviet al. 1989)) will often be completely unable
to deal with TAPs.

The second special aspect of CIRCA’s scheduling prob-
lem is that, instead of a period specification, each TAP is
given to the Scheduler with a specification of the maximum
acceptable invocation separation. CIRCA specifies invo-
cation separations because synchronous behavior is not nec-
essary for the control tasks it plans. These unique con-
straints led us to develop novel TAP scheduling approaches
that can significantly outperform simple adaptations of exist-
ing periodic-task scheduling algorithms (Musliner 1994a).

Meta Control
The Adaptive Mission Planner (AMP) is responsible for
the highest-level control of a CIRCA agent, managing the
agent’s long-term goals and the agent’s deliberation activity.
The agent’s long-term mission may be divided into phases,
each of which requires its own safety-preserving and goal-
achieving reactive plan. For example, our UCAV scenarios
include missions that have phases such as ingress, attack,
and egress. The ingress phase is distinguished from the at-
tack phase both by the characteristics of the flight path (e.g.,
a nap-of-earth stealthy approach vs. a popup maneuver very
near a target) and by the expected threats (e.g., the types of
missile threats present at different altitudes) and goals (e.g.,
reaching the target zone vs. deploying a weapon). The
AMP reasons about long-term goals, problem structures,
and approaching deadlines to decide what the near-term
goals should be, and what problems the near-term reasoning
should be focused on. Because the phase plans may need
to be created under time pressure as a mission executes, the
AMP can make tradeoffs in which mission goals and safety
threats are considered in each phase. The AMP’s meta-
control functions intelligently allocate the CSM deliberation
effort to different mission phases, solving the problems with
differing levels of safety and goal-achievement depending
on how much deliberation time is available (Musliner 2001;
Goldman, Musliner, & Krebsbach 2003; Musliner, Gold-
man, & Krebsbach 2003).

We take an approximate decision-theoretic approach to
the CIRCA deliberation scheduling problem: decision-
theoretic, because we attempt to optimally allocate the
CSM’s reasoning time; approximate because full formula-
tions of the problem are intractable and some formulations
involve an infinite regress. CIRCA’s earliest meta-control
used coarse-grain modifications to the problems it solved to
trade planning time against plan quality (Musliner 2000). In
later work (Goldman, Musliner, & Krebsbach 2001), we de-
veloped a Markov Decision Process (MDP) model of the de-
liberation scheduling problem, controlling which of several
possible problems the system should work on at any time.
Since the MDP may be very large and difficult to solve,



we also presented greedy (myopic) approximations to the
optimal solution. In those experiments we showed that a
discounted myopic approximation technique provided good
performance with very limited computational costs. We also
compared the performance of the discounted greedy approx-
imation with other strawman agents that attempt to manage
deliberation using easy-to-compute heuristics.

Distributed CIRCA: Multi-Agent Performance
Guarantees
We have also investigated methods for extending the real-
time performance guarantees that single-agent CIRCA pro-
vides to small teams of agents. At the highest level, the
AMP’s primary responsibility is managing an individual
agent’s tasks and coordinating with other agents to achieve
the overall team mission. The AMP does this by determining
what tasks are its responsibilities through negotiation with
other cooperating agents, and then arranging to have plans
(controllers) generated to successfully address those tasks
during the execution of the mission.

In this context, a team of CIRCA agents must arrange
to have different agents responsible for different goals and
threats, depending on their available capabilities and re-
sources (e.g., ECM equipment and weapons loadout). Using
a Contract-Net-like arrangement (Smith 1977), the AMPs
submit bids to handle these responsibilities. For each mis-
sion phase, the CIRCA agents must have plans, or con-
trollers, that are custom-designed (either before or during
mission execution) to execute the mission phase and make
the best possible effort to achieve the goals and defeat the
threats associated with the phase. When necessary, the
agents can build coordinated plans that communicate at
runtime to ensure real-time coordination across a team of
agents.

The most critical form of coordination for real-time safety
guarantees iscoordinated preemption, in which a set of com-
plementary reactions executed by distributed agents detect
threats and take action to preempt hazardous transitions.
Two key issues underlie these “You sense, I’ll act” plans:

• Planned communication — The agents must recognize
the need to explicitly communicate (both sending and re-
ceiving) at a rate fast enough to satisfy the coordinated pre-
emption timing constraint. In our example, the sensing agent
must agree not only to detect the hot spot fast enough, but
also to tell the other agent about the opportunity quickly
enough. Likewise, the acting agent must focus sufficient at-
tention on “listening” for a message from the sensing agent
at a high enough frequency that it can guarantee to both re-
ceive the message and act on the opportunity, all before the
deadline.
• Distributed causal links — The distributed agents must
be able to represent and reason about changes to their world
that are not directly under their control, but which are pre-
dictable enough to be relied upon for a preemption guar-
antee. For example, in our scenario, the sensing agent must
rely on the acting agent to take the appropriate action in time
to guarantee that the data collection is performed in time. In

complementary fashion, the acting agent must construct a
plan that honors its commitment to the acting agent. If one
of the agents cannot construct a plan that satisfies its com-
mitments, it must inform the others.

Probabilistic CIRCA
As we applied CIRCA in increasingly demanding ap-
plications, it became apparent that the architecture’s
theoretically-strong stance on performance guarantees was
not flexible enough to deal with many real-world domains.
In some problems, some action choices expose an agent to
more possible failure-causing events than preemptive ac-
tions can be assured to avoid. More generally, there are
many domains that are too dangerous to ever ensure 100%
safety; in these domains, we’d like the system to make trade-
offs between mission performance and safety criteria.

Faced with a domain that cannot be made 100% safe,
Classic CIRCA fails to find a plan. And even if a 100% safe
plan can be found, it may be less than satisfactory. For ex-
ample, when we built a domain model for Classic CIRCA to
control an aircraft in which the landing gear could fail, and
there was no way to repair the landing gear or land safely
with it broken, the system quickly constructed a safe plan:
sit on the runway and don’t take off. Unfortunately, this plan
did not achieve any of the non-safety-related mission goals.

Trading off some degree of safety in order to achieve
important mission-related goals requires that CIRCA make
careful choices about which potential failures it is most
safe not to be prepared for. Probabilistic CIRCA does this
by trimming away enough of the most unlikely transitions
to failure that the remaining ones can be guaranteed pre-
empted. When developing this variation of CIRCA, we de-
veloped a variety of techniques for estimating probabilities
of reaching states and traversing transitions to failure; the
non-Markovian aspects of CIRCA in particular make it chal-
lenging to assess the probabilities of transitions to failure
that persist across sequences of states.

The cumulative probabilities of the transitions that have
been trimmed to achieve a subset of the space that can be
safely controlled indicate the degree of risk that would be in-
curred should the control plan be followed. With this infor-
mation, informed tradeoffs between risk and mission goals
are possible (Atkins, Durfee, & Shin 1996).

This in turn raises the question of what can or should hap-
pen if one of the trimmed transitions actually occurs, putting
the agent into a state that its control plan isn’t prepared to
handle. Our extensions consider all of the states just out-
side of the control envelope and develop tests to detect when
such a state has been reached. A TAP is formed with this
test, where the corresponding action involves replacing the
current TAP schedule with another one that is intended to at
least maintain safety. For example, in our aircraft domain,if
the landing-gear failure was trimmed from the initial control
plan, the TAP detects this failure and implements a control
plan for circling the airport, with the expectation that this
will buy time for the AIS to use in formulating an appro-
priate control plan for recovering from this situation. Al-



ternatively, the appropriate control plan for this contingency
might have been developed ahead of time, in which case it
would be swapped in immediately (Atkins, Durfee, & Shin
1997).

GSMDPs: To capture a more powerful and precise no-
tion of probabilistic guarantees, we began exploring a mod-
ified CIRCA world model in which the fixed worst-case
delays associated with transitions were replaced by prob-
ability distributions of possible delays. The idea then is
to build plans that allow a certain level of safety risk, as
long as the overall probability of failure remains below some
specified threshold. It turns out that the resulting model is
a Generalized Semi-Markov model, and is thus extremely
intractable. Even assessing whether a particular controller
meets the safety threshold is not analytically computable.
So first we developed a sampling-based approach to prob-
abilistic verification, deriving formal bounds on how many
simulated plan executions (samples) had to be generated to
ensure, with a certain level of confidence, that a plan met
the desired safety threshold (Younes & Musliner 2002). We
then explored various approaches to extending the CIRCA
CSM to build plans in this probabilistic model, as well as
other techniques (Younes, Musliner, & Simmons 2003).

Conclusion and Future Directions
In summary, the CIRCA architecture combines soft-real-
time reaction planning and scheduling with hard-real-time
reactive plan execution, all tailored to realistic non-closed-
world domains. The architecture has been extended in
several major directions, including formal verification of
performance guarantees, multi-agent team guarantees, and
probabilistic plans with well-understood risk/reward trade-
offs. Ongoing challenges include improving the scalabil-
ity of the planning algorithms and extending the representa-
tional power of the domain description language to include
task hierarchy and decomposition information.

References
Agre, P. E., and Chapman, D. 1987. Pengi: An implementa-
tion of a theory of activity. InProc. National Conf. on Artificial
Intelligence, 268–272. Morgan Kaufmann.

Atkins, E. M.; Durfee, E. H.; and Shin, K. G. 1996. Plan devel-
opment using local probabilistic models. InUAI, 49–56.

Atkins, E. M.; Durfee, E. H.; and Shin, K. G. 1997. Detecting and
reacting to unplanned-for world states. InProc. National Conf. on
Artificial Intelligence, 571–576.

Glover, F., and Laguna, M. 1993. Tabu search. In Reeves, C.,
ed., Modern Heuristic Techniques for Combinatorial Problems.
Oxford, England: Blackwell Scientific Publishing.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.; and Boddy,
M. S. 1997. Dynamic abstraction planning. InProc. National
Conf. on Artificial Intelligence, 680–686.

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D. 2001.
Managing online self-adaptation in real-time environments. In
Proc. Second International Workshop on Self Adaptive Software.

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D. 2003.
Managing online self-adaptation in real-time environments. In
Lecture Notes in Computer Science, volume 2614. Springer-
Verlag. 6–23.

Goldman, R. P.; Musliner, D. J.; and Pelican, M. J. 2002. Ex-
ploiting implicit representations in timed automaton verification
for controller synthesis. InProceedings of the 2002 Hybrid Sys-
tems: Computation and Control Workshop.

Levi, S. T.; Tripathi, S. K.; Carson, S. D.; and Agrawala, A. K.
1989. The MARUTI hard real-time operating system.ACM Op-
erating System Review23(3).

McDermott, D. 1999. Using regression-match graph to control
search in planning.Artificial Intelligence109(1-2):111–159.

Musliner, D. J.; Hendler, J. A.; Agrawala, A. K.; Durfee, E. H.;
Strosnider, J. K.; and Paul, C. J. 1995. The challenges of real-time
AI. IEEE Computer28(1):58–66.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993. CIRCA: a
cooperative intelligent real-time control architecture.IEEE Trans.
Systems, Man, and Cybernetics23(6):1561–1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995. World
modeling for the dynamic construction of real-time controlplans.
Artificial Intelligence74(1):83–127.

Musliner, D. J.; Goldman, R. P.; and Krebsbach, K. D. 2003.
Deliberation scheduling strategies for adaptive mission planning
in real-time environments. InProc. Third International Workshop
on Self Adaptive Software.

Musliner, D. J.; Goldman, R. P.; and Pelican, M. J. 2000. Using
model checking to guarantee safety in automatically-synthesized
real-time controllers. InProc. IEEE Int’l Conf. on Robotics and
Automation.
Musliner, D. J. 1993. CIRCA: The Cooperative Intelligent
Real-Time Control Architecture. Ph.D. Dissertation, University
of Michigan, Ann Arbor. Available as University of Maryland
Computer Science Technical Report CS-TR-3157.

Musliner, D. J. 1994a. Scheduling issues arising from auto-
mated real-time system design. Technical Report CS-TR-3364,
UMIACS-TR-94-118, University of Maryland Department of
Computer Science.

Musliner, D. J. 1994b. Using abstraction and nondeterminism to
plan reaction loops. InProc. National Conf. on Artificial Intelli-
gence, 1036–1041.
Musliner, D. J. 2000. Imposing real-time constraints on self-
adaptive controller synthesis. InProc. Int’l Workshop on Self-
Adaptive Software.

Musliner, D. J. 2001. Imposing real-time constraints on self-
adaptive controller synthesis. InLecture Notes in Computer Sci-
ence, number 1936. Springer-Verlag.

Smith, R. 1977. The contract net: A formalism for the controlof
distributed problem solving. InProc. Int’l Joint Conf. on Artificial
Intelligence, volume 1, 472.
Younes, H. L., and Musliner, D. J. 2002. Probabilistic plan verifi-
cation through acceptance sampling. InProc. AIPS-02 Workshop
on Planning via Model Checking, 81–88.

Younes, H. L. S.; Musliner, D. J.; and Simmons, R. G. 2003. A
framework for planning in continuous-time stochastic domains.
In Proc. Int’l Conf. on Automated Planning and Scheduling, 195–
204.
Yovine, S. 1998. Model-checking timed automata. In Rozenberg,
G., and Vaandrager, F., eds.,Embedded Systems. Springer Verlag.


