Appearsin Proc. Int’l Conf. on Intelligent Robots and Systems (IROS)
Maui, Hawaii, 2001

Planning with Increasingly Complex Executive Models

David J. Musliner, Robert P. Goldman, Michael J. S. Pelican

Automated Reasoning Group
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418
{musliner, goldman, pelican}@htc.honeywell.com

Abstract

We are developing autonomous control systems for
mission-critical domains that require hard real-time
performance guarantees. To automatically build reac-
tive plans that meet these requirements, we use for-
mal verification (model checking) techniques to assess
the quality of plans as they are built. The verifica-
tion process uses precise timed automaton models of
the executive that will run the resulting reactive plan.
This reflexive modeling allows our system to formally
verify not just that its plans are correct, but that they
will be executed correctly.

1 Introduction

In hazardous or mission-critical domains such as fly-
ing aircraft and controlling industrial plants, the em-
phasis on safety and predictability makes it difficult to
deploy intelligent or self-adaptive control systems. In
addition to rigorous performance requirements, these
types of applications require fine-grained certification
and extremely high levels of confidence from their hu-
man designers and funders.

1.1 Executives Considered Harmful

Most recent work in intelligent autonomous control
has emphasized increasingly complex plan executives.
These complex executives (e.g., RAPs [4], PRS [6], Re-
mote Agent Executive [9]) support task decomposition,
action sequencing, persistent goals, and powerful world
modeling capabilities. They provide specialized, very
powerful and concise programming languages. The
advantage 1s that engineers can directly encode their
knowledge about task decomposition and interactions,
and higher-level planners can build relatively simple
plans that rely on the executive to handle action fail-
ures and other forms of uncertainty. The disadvantage
is that, because so much detail has been removed from
the plan and left implicit in the executive, 1t is not clear
that the plan will be executed as expected.

1.2 Simplify!

We take the position that the best way to achieve re-
liable, robust, and trustworthy autonomy is through
the use of a predictable executive supporting simple
execution semantics that can be directly considered
by a planner. That is, a system in which the plan-
ner generates plans satisfying certain verifiable proper-
ties (e.g., timeliness and correctness), which are then
predictably and reliably executed. Ours is essentially
a high-level, control-specific, automatic programming
paradigm. The system designer provides a description
of primitive sensing and control actions, a description
of the domain and its dynamics, and a description of
the system’s goals. The system generates and exe-
cutes a plan composed of primitives and combination
functions (control logic) to reliably achieve the goals.
Once the system code itself has been certified, the only
further verification/certification requirements apply to
the input models of primitives and the domain; each
plan (program/controller) is itself verified automati-
cally during generation.

CIRCA is an autonomous, self-adaptive control ar-
chitecture designed specifically for mission-critical do-
mains. CIRCA combines on-line planning and schedul-
ing systems with a very simple, very predictable real-
time plan executive. To increase designer confidence
and ensure that the plans that CIRCA makes are
well-founded, we use formal verification techniques in
the planning process. CIRCA dynamically creates
time-constrained reactive control plans (cyclic loops of
Test-Action Pairs, or TAPs) based on its expectations
about future world states and its own potential actions.
CIRCA raises the timeliness aspects of plan execution
to the same level of concern as the logical correctness
standards associated with traditional planning. This
involves not just reasoning about time at a coarse level
during plan generation, but also detailed timing infor-
mation that explicitly accounts for sensing activity, the
delays between sensing and action [8], communication

delays, and the lowest-level details of action selection
and execution.

This paper describes how CIRCA uses an explicit,
formal model of its plan executive during the planning
process to verify that the plans it is constructing will
be executed in a timely and correct fashion. Using
this self-modeling, CIRCA is able to predict and avoid
several types of undesirable behaviors that may result
from a less-rigorous integration of planning and execu-
tion models.

In fact, CIRCA employs three increasingly complex
models of plan execution at different times during the
planning process. The models have different levels of
precision and information needs, and correspondingly
different computational costs.

1. Most Abstract: Simple Timing Estimates —
When making a decision about which of several pos-
sible actions to plan for a state, CIRCA uses its sim-
plest model of execution: actions are assumed to take
only their worst-case execution times, and are con-
sidered completely independently. That 1s, CIRCA
does not worry about what other actions have been
planned, or how quickly they must be performed,
etc. This level of execution modeling is similar to
a traditional planner; except that CIRCA is con-
cerned about metric timing information and non-
volitional (uncontrollable) events that traditional
planners cannot handle.

2. Less Abstract: Verify Independent TAPs —
After each action decision is made, the CSM uses its
formal verification system to confirm that the plan-
ner’s estimates of timing relationships are correct.
This verification process uses models of planned
actions that are considerably more accurate than
method 1 above. This paper 1s focused on describing
this level of modeling.

3. No abstraction: Verify TAP Schedule —
The third form of modeling and verification takes
place after an entire plan has been synthesized and
it is thought to be correct (preventing failure) and
desirable (achieving goals). By “thought to be cor-
rect,” we mean checked using the more abstract
models described above in (1) and (2). When this
test has been passed, the CSM builds an executable
TAP schedule and performs a final verification pro-
cess. With the TAP schedule available, the final ver-
ification process is even more accurate than method
2 above. The final verification can consider the or-
der in which TAPs are run, the actual TAP test ex-
pression costs (which can vary non-monotonically as
the plan is being formed and actions are planned for
more than one state), as well as the various internal
overhead delays associated with the real executive.
We are currently testing the first implementation of

this final verification process.

2 The Controller Synthesis Module

CIRCA’s CSM automatically synthesizes real-time re-
active controllers that guarantee system safety when
run on CIRCA’s real-time subsystem. The CSM takes
in a description of the processes in the system’s envi-
ronment, represented as a set of time-constrained tran-
sitions that modify world features. These transition
descriptions are similar to STRIPS operators with the
addition of timing information and nondeterministic
outcomes. For example, Figure 1 shows several transi-
tions taken from a problem where CIRCA is to control
the Cassini spacecraft in Saturn Orbital Insertion.!
The CSM reasons about transitions of three types:

Action transitions represent actions performed by
the RTS. These parallel the operators of a conven-
tional planning system. Associated with each action
1s a worst case execution time, an upper bound on
the delay (A(a) < t) before the action occurs.

Temporal transitions represent uncontrollable pro-
cesses, some of which may need to be preempted.
Associated with each temporal transition i1s a lower
bound on its delay (A(tt) > t). Transitions that
have a delay lower bound of zero are referred to as
“events,” and are handled specially for efficiency rea-
sons.

Reliable temporal transitions represent continu-
ous processes that may need to be employed by the
CIRCA agent. For example, when CIRCA turns on
an TRU it initiates the process of warming up that
equipment; the process will complete after some de-
lay. Reliable temporal transitions have both upper
and lower bounds on their delays.

2.1 CSM Algorithm

Given problem representations as above, the controller
synthesis (planning) problem can be posed as choosing
a control action for each reachable state (feature-value
assignment) of the system. This problem is not as sim-
ple as it sounds, because the set of reachable states is
not a given — by the choice of control actions, the
CSM can render some states (un)reachable.

Indeed, since the CSM focuses on generating safe
controllers, a critical issue is making failure states un-
reachable. In controller synthesis, this is done by the
process we refer to as preemption. A transition t is
preempted in a state s iff some other transition ¢ from
s must occur before ¢ could possibly occur. The CSM
achieves preemption by choosing a control action that

!This example is adapted from Erann Gat’s “From the
Trenches” [5].

;3 Turning on an Inertial Reference Unit (IRU)
ACTION start_IRUl_warm_up
PRECONDITIONS: ’ ((IRU1 off))
POSTCONDITIONS: ’((IRUl warming))
DELAY: <=1

;; the process of the IRU warming

RELTABLE-TEMPORAL warm_up_IRU1
PRECONDITIONS: ’ ((IRU1 warming))
POSTCONDITIONS: ’ ((IRU1 on))
DELAY: [45 90]

; ;sometimes the IRUs break without warning
EVENT IRU1_fails
PRECONDITIONS: ’((IRU1 on))
POSTCONDITIONS: ’ ((IRU1 broken))

;3 if the engine is burning while the active

;, IRU breaks, we must quickly fix problem before
the spacecraft gets too far out of control

TEMPDRAL fail_if_burn_with_broken_IRU1
PRECONDITIONS: ’ ((engine on) (active_IRU IRU1)

(IRU1 broken))

POSTCONDITIONS: ’((failure T))
DELAY: >=5

Figure 1: Example transition descriptions given to

CIRCA’s planner.

is fast enough that it is guaranteed to occur before the
transition to be preempted.

At the highest level of abstraction, the controller syn-
thesis algorithm is as follows:

1. Choose a state from the set of reachable states (at
the start of controller synthesis, only the initial
state(s) is(are) reachable).

2. For each uncontrollable transition enabled in this
state, choose whether or not to preempt it (any
transition that leads to a failure state must be pre-
empted).

3. Choose a control action or no-op for that state.

4. Invoke the verifier to confirm that the (partial) con-
troller is safe.

5. If the controller is not safe, use information from the
verifier to direct backtracking.

6. If the controller is safe, recompute the set of reach-
able states.

7. If there are no unplanned reachable states (reach-
able states for which a control action has not been
chosen), terminate successfully.

8. If some unplanned reachable states remain, loop to
step 1.

Figure 2 provides a simple example of the process
of controller synthesis. Initially (i), there is only one
state reachable, the initial (oval) state. In (ii), the
CSM has chosen a control action (dashed line) for the

@ (in) (i)

FAILURE

BACKTRACK

"x@ @4

(iv) v) (vi)

Figure 2: A simple example of controller synthesis.

initial state (planned states are shaded gray), that will
carry the system to a goal state, sf (goal states are
indicated by bold outlines). There is also a temporal
transition (double line) that may carry the system to
s2. In (iii), we see the CSM decide to assign no-op as
the control action for s1. This is permissible because
sl is a safe state (there are no transitions to failure
from that state), and is desirable because s! is a goal
state. In (iv), the CSM attempts to complete the con-
troller synthesis process by assigning an action to s2
that will carry the system to s3. However, this action
does not preempt the transition from s2 to the fail-
ure state (black). This triggers a backtrack (v), and
the system chooses an alternative action for s2 (vi)
that will carry the system to siI. This alternative ac-
tion does preempt the transition to the failure state,
so the controller is safe. All reachable states have been
planned for, so the controller synthesis process has ter-
minated successfully.

During the course of the controller synthesis run
above, the CSM will have employed the verifier mod-
ule after each assignment of a control action (i.e., after
i, iii, iv and vi).
the controller is not complete. At such points we use
the verifier as a conservative heuristic by treating all
unplanned states (e.g., s2 in iii) as if they are “safe
havens.” Unplanned states are treated as absorbing

However, at stages ii, i1 and 1v,

states of the system, and any verification traces that
enter these states are regarded as successful. When
the verifier indicates that a CSM-generated controller
1s unsafe, the CSM will query it for a path to the dis-
tinguished failure state. The set of states along that
path provides a set of candidate decisions to revise.

3 Modeling for Verification

The temporal model underlying the CSM plan graphs
is deceptively complex because it is non-Markovian.
We do not include time in the CSM state description
(we discuss the rationale for this design decision later).

Verifying that a plan is correct requires a path-
dependent computation to determine how much time
remains on a transition’s delay when it applies to two or
more connected states. E.g., when TRU1 has failed and
the system progresses through several transitions while
fail_if_burn_with_broken_IRU1 continues to apply.
To complicate matters further, we cannot assume that
the planned actions are completely independent: they
will be executed by a real executive with limited abil-
ities to sense and react to the world, so the planned
actions will compete for this bounded reactivity.

To efficiently reason about the timing in this world
model and account for the executive’s bounded reactiv-
aty, the CSM relies on an automatic verification system.
The verifier ensures that the controllers that the CSM
builds are safe. When making action decisions, the
CSM uses very simple reasoning, non-path-dependent
to make “guesses” about transition preemptions (the
only really important temporal issue in these plans).
Then each of these guesses is formally verified using a

faithful model of the RTS.

3.1 Execution Semantics

The controllers of the CIRCA RTS are not arbitrary
pieces of software; they are intentionally very limited
in their computational power.? The controller gener-
ated by the CSM is compiled into a set of Test-Action
Pairs (TAPs) to be run by the RTS. Each TAP has
a boolean test expression that distinguishes between
states where a particular action is and is not to be ex-
ecuted. The test expression is a function of the plan
as a whole, because the same action may be assigned
to more than one state. A sample TAP for the Saturn
Orbit Insertion domain is given in Figure 3.

The set of TAPs that make up a controller are as-
sembled into a loop and scheduled to meet all the
TAP deadlines. The deadlines are computed from
the delays of the transitions that the control actions
must preempt.If scheduling does not succeed, the CSM
will backtrack to revise the controller, generating and
scheduling a new set of TAPs.

3.2 Timed Automata
Now that we have a sense of the execution semantics

of CIRCA’s RTS, we briefly review the modeling for-

malism, timed automata, before presenting the model

2These limitations serve to make controller synthesis
computationally efficient and make it simpler to build an
RTS providing timing guarantees.

#<TAP 2>
Tests: (AND (IRU1 BROKEN)
(OR (AND (ACTIVE_IRU NONE) (IRU2 ON))

(AND (ACTIVE_IRU IRU1) (ENGINE ON))))

Acts : select_IRU2
I U T SR B

| TAP1 | TAP2 | TAP1 | TAP3 | TAP1 | TAP4

\
\

Figure 3: A sample Test-Action Pair and TAP
schedule loop from the Saturn Orbit In-
sertion problem.

itself. A timed automaton is a finite automaton aug-
mented with timing information.

Definition 1 (Timed Automaton) A timed
automaton A 1s a tuple <S,sl, X,E,S,I> where

1. 8 is a finite set of locations;
2. st is the initial state;

3. X 1s a finite set of clocks;

4. L 1s a finite set of labels;

5. & is a finite set of edges; and
6. T is the set of wnvariants.

Each edge e € £ is a tuple (s, L, 1, p,s') where s € S
is the source, s’ € S is the target, L C £ are the labels,
¥ € Wy is the guard, and p : X — X U {0} is a clock
assignment [3].

Timing constraints appear in guards, invariants and
clock assignments. In our modeling, all clock con-
straints are of the form ¢; < k or ¢; > k for some clock
¢; and integer constant k. Informally, guards dictate
when the model may follow an edge, invariants indicate
when the model must leave a state, and clock assign-
ments are used to start and reset processes.

It often simplifies the representation of a complex
system to treat it as a product of some number of sim-
pler automata. The labels £ are used to synchronize
edges in different automata when creating their prod-
uct.

Definition 2 (Product Automaton) Given

two automata Ay and As, Ay = <Sl,si,X1,£1,€1,Il>
and Ay, = <Sz,5§,X2,£2,52,12>, thewr product A,
18 <81 X 82, 8;, Xl U Xz,ﬁl U EQ,SP,IP>, where 8; =
(sh,8%) and Z(s1,s2) = Z(s1) AZ(s2). The edges are
defined by:

1. for I € Ly 0 Lo, for every (s1,l,¢1,p1,8)) €

&, and (s2, L4, pa,sh) € &, & contains
((s1,52),a,%1 Utba, p1 U pa, (57, 55)).

2. forl € L1\La, for (s1,1,%1,p1,8]) € & and s2 € Sa,
&, contains ((s1,52),1,91, p1, (51, s2)). Likewise for
le L, \ L.

State space
Image

Action
Images

Uncontrollable
Transition
Images
Enable T
@_
Disable T w Enable T)

Disable T
[

Base Model

. Fire A ucceeditest

RTS Model

Transition Models
Figure 4: A pictorial summarization of the verifier
model and its relation to the CSM model.

State 39 State 41 State 44
(ACTIVE_IRU IRU1) | (ACTIVE_IRUIRU) |_ _ _ _ _ | (ACTIVE_IRU IRU2)
(ENGINE ON) (ENGINE ON) (ENGINE ON)
(IRU1 ON) IRU1_fails (IRU1 BROKEN) select_IRU2 | (JIRU1 BROKEN)
(IRU2 ON) (IRU2 ON) M<=3 (IRU2 ON)

fail_if_burn_with_broken_IRU1
MA>=5

(FAILURE T)

Figure 5: A portion of the CIRCA plan graph show-
ing a simple preemptive action.

3.3 Modeling CIRCA with Timed
Automata

CIRCA translates the CSM model into a set of inter-
acting timed automata for a timed automaton verifier
(see Figure 4). The use of multiple automata permits
us to accurately and elegantly capture the interaction
of multiple, simultaneously operating processes. The
starting point of the translation is the CIRCA plan
graph, constructed by the CIRCA Controller Synthe-
sis Module. The plan graph captures all of the planned
reachable states as well as the planned actions and pre-
emption decisions discussed above. A small portion
of the plan graph for our running example is shown
in Figure 5. In this section of the graph, CIRCA
has predicted the possibility of an IRU1 failure dur-
ing an engine burn, and has planned to definitely take
the select_IRU2 action before the transition to failure
could possibly occur.

As we have outlined above, the CSM’s plan graph
1s a poor representation of the actual execution se-
mantics of the CIRCA control system. There is not
a single plant taking one action at a time; the environ-
ment is made up of a number of processes that are ex-
ecuting concurrently. These processes are represented
as the nonvolitional transitions in a CSM domain de-

fail_test2 succeed_test2 fall_test2

m m disable_fai I_if_bumm
enable IRU1_fails IRU1_fails select_IRU2
LY e |2
enable fail_if_burn

fail_if_burn

Failure

Figure 6: A portion of the verifier base model cor-
responding to Figure 5.

disable IRU1 fails enable IRU1 fails

m enable IRU1 fails m

Disabled |— Enabled

disable IRU1 fails

Figure 7: The verifier transition model correspond-
ing to the event in Figure 5.

scription: the temporals, events and reliable temporals.
The actions of the CIRCA control system occur con-
currently with these environment processes. To model
the CIRCA plan for verification, we construct several
parallel timed automata that capture these separate
processes.

As illustrated in Figure 4, there is one “base ma-
chine,” the locations of which correspond to the states
of the CSM model. For example, Figure 6 illustrates a
portion of the base model corresponding to Figure 5.
The base machine captures the overall state of the sys-
tem and its environment. The base machine interacts
with a number of “transition machines,” that corre-
spond to the transitions the CSM reasons about. This
interaction is captured by the labels on the edges of the
various machines; these ensure that the base machine
state reflects the effect of the transitions and ensure
that the state of the transition machines accurately in-
dicate whether or not a given process is enabled in a
particular system state. Note that there are no clocks
or timing constraints in the base machine; all timing
constraints will be handled by other automata in the
composite model.

For every uncontrollable transition, there is a
separate timed automaton modeling that process.
Figures 7 and 8 respectively illustrate the tran-
sition models for the IRU_fails event and the
fail_if_burn_with_broken_IRU1l temporal transi-
tion to failure. Notice that the event transition is not
constrained by any time bounds. The temporal transi-

disable fail_if_burn enable fail_if_burn

enable fail_if_burn

) =
Disabled |— Enabled

fail_if_burn
W

disable fail_if_burn

Figure 8: The verifier transition model correspond-
ing to the temporal transition to failure in

Figure 5.
Ca:=0 succeed_test2 - select_ IRU2
eoe — I~ Latch | — ~ |Committed| = — ~ ,,,
Sensors Ca<=3 =

fail_test2

Figure 9: A portion of the verifier RTS model cor-
responding to the action planned in Fig-
ure 5.

tion in Figure 8, on the other hand, uses a unique clock
Ct to ensure that the failure transition cannot occur
until it has been enabled for at least 5 time ticks. Each
temporal transition will have its own separate clock.
Again, the edge labels synchronize the transition model
with the base model, so that if this transition automa-
ton 1is able to execute its fail_if_burn transition, the
base model will recognize that a failure state is reach-
able.

The RTS model represents all the actions of the
CIRCA executive in a single automaton. The RTS
cycles over the TAP schedule, successively executing
each TAP’s test expression and, if the expression re-
turns true, the TAP’s action. The TAP test expres-
sion may be a boolean combination of primitive tests
of world features. To ensure that the TAP’s test ex-
pression perceives only a time-consistent view of the
world, we require that the RTS latch all of the sensor
values used by a TAP at the start of the TAP.

As illustrated in Figure 9, the timed automaton
model of the RTS moves through a series of “latched”
and “committed” states representing this execution cy-
cle. A single clock is used to capture the timing con-
straints on RTS behavior. After the RTS model moves
into a TAP’s latch state (and the clock is reset to zero),
the TAP’s tests are represented as occurring by two
transitions, a succeed_ and fail_ transition. These
are synchronized with transitions in the base model
that indicate whether the current world state satisfies
the TAP’s test expression. If so, the RTS model pro-
ceeds to a committed state, in which it definitely exe-

cutes the TAP’s action. The committed state has an
invariant that causes the action to occur before its up-
per time bound. After the TAP has either fired or not,
the RTS model moves on to the next segment repre-
senting the next TAP in the schedule loop.

3.4 What We Verify

There are two classes of safety violations that we look
to the verifier to detect. The obvious one is a tran-
sition to the CSM’s distinguished failure state. The
second is a failure to successfully preempt some transi-
tion that does not carry the system directly to a failure
state. These are transitions that the CSM has decided
to preempt in order to make other states unreachable,
possibly to make the controller smaller and more ef-
ficient or to avoid other states from which the failure
state will be reachable. To detect the second class of
safety violations, for each state in the base machine we
add a transition to the distinguished failure state for
each transition that the CSM intends to preempt.

3.5 Final Verification of Complete
Controller

The above model correctly represents the interaction
between the environment and the RTS. However, it is
necessarily only heuristic in nature, until we have a
complete plan. The reason is that until we know the
entire plan, we cannot know the exact TAP tests or
the shape of the TAP loop (see Figure 3), and hence
cannot know the true delays before actions occur. Cur-
rently, we take the admissible, but overoptimistic, step
of assuming the agent will immediately choose to take
the action for its current state.

Once the controller synthesis process has completed,
and the TAP loop has been generated, we run the ver-
ification algorithm one final time. At this time, we
know the exact shape of the TAP loop, and hence the
exact execution semantics of the plan. We do not have
space here to outline the TAP loop translation process;
details will be given in the full paper.

4 Related Work

Asarin el al. [2] developed a similar, game-theoretic
method of synthesizing real-time controllers that do
account for time and uncontrollable events. This work
stopped at the design of the algorithm and derivation
of complexity bounds; to our knowledge it was not im-
plemented. This approach has been implemented for
the special case of automatically synthesizing sched-
ulers based on Petri Net designs [1], using the KrRoNOS
model-checking program. Our work differs in being
aimed at a different class of control problems, involv-
ing controlling devices in an active environment. We

also differ in constructing purely reactive (memoryless)
controllers.

Kabanza [7] has developed work very similar to ours
in scope and intention. He incorporates time by ef-
fectively imposing a system-wide clock and progressing
the controller one “tick” at a time. In control problems
with widely varying time constants, this approach will
lead to an explosion of states; we have adopted model-
checking techniques that minimize this state explosion.

5 Conclusions

The CIRCA CSM is a novel application of automatic
verification systems to automatic synthesis of con-
trollers (planning). Previous attempts to use auto-
matic verifiers in planning have limited themselves to
simpler execution semantics and/or simply assumed
that the plans could be implemented correctly. Our
system has a rich model of the execution of its timed
controller, that reflects the behavior of a hard real-time
executive.

While the examples shown here are quite small,
it should be clear that this translation into timed
automata is highly verbose. Consider, for example,
that every state of the base model must include one
succeed_or fail_ labeled edge for each planned TAP.
Furthermore, this multi-automaton model cannot be
implemented in a naive way, as this leads to a state
space explosion. Our implementation uses a more ef-
ficient algorithm that exploits features of the CIRCA
domain model and lazily builds the product automa-
ton, producing speedups of two orders of magnitude
on our test problems. Details of the algorithm will be
presented in forthcoming publications.

Acknowledgments

This material i1s based upon work supported by
DARPA/ITO and the Air Force Research Laboratory
under Contract No. F30602-00-C-0017.

References
[1] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S.Tripakis,

and S.Yovine, “A framework for scheduler synthesis,”
in Proceedings of the 1999 IEEE Real-Time Systems
Symposium (RTSS ’99), Phoenix, AZ, December 1999,
IEEE Computer Society Press.

[2] E. Asarin, O. Maler, and A. Pneuli, “Symbolic con-
troller synthesis for discrete and timed systems,” in Pro-
ceedings of Hybrid Systems I, P. Antsaklis, W. Kohn,
A. Nerode, and S. Sastry, editors, Springer Verlag, 1995.

[3] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The
Tool KRONOS,” in Hybrid Systems 111, 1996.

[4] R. J. Firby, “An Investigation into Reactive Planning
in Complex Domains,” in Proc. National Conf. on Ar-
tificial Intelligence, pp. 202-206, 1987.

[5] E. Gat, “News From the Trenches: An Overview of Un-
manned Spacecraft for Al,” in AAAT Technical Report
555-96-04: Planning with Incomplete Information for
Robot Problems, 1. Nourbakhsh, editor. American Asso-
ciation for Artificial Intelligence, March 1996. Available
at http://www-aig. jpl.nasa.gov/home/gat/gp.html.

[6] M. P. Georgeff and F. F. Ingrand, “Decision-Making in
an Embedded Reasoning System,” in Proc. Int’l Joint
Conf. on Artificial Intelligence, pp. 972-978, August
1989.

[7] F. Kabanza, “On the Synthesis of Situation Control
Rules under Exogenous Events,” in Theories of Ac-
tion, Planning, and Robot Control: Bridging the Gap,
C. Baral, editor, number WS-96-07, pp. 86-94. AAAI
Press, 1996.

[8] D. J. Musliner, E. H. Durfee, and K. G. Shin, “Predic-
tive Sufficiency and the Use of Stored Internal State,”
in Proc. ATAA/NASA Conf. on Intelligent Robots in
Field, Factory, Service, and Space, March 1994.

[9] B. Pell, E. Gat, R. Keesing, N. Muscettola, and
B. Smith, “Robust Periodic Planning and Execution
for Autonomous Spacecraft,” in Fifteenth International
Joint Conference on Artificial Intelligence, 1997.

