
Appears in Proc. Int’l Conf. on Intelligent Robots and Systems (IROS)
Maui, Hawaii, 2001Planning with Increasingly Complex Executive ModelsDavid J. Musliner, Robert P. Goldman, Michael J. S. PelicanAutomated Reasoning GroupHoneywell Laboratories3660 Technology DriveMinneapolis, MN 55418fmusliner, goldman, pelicang@htc.honeywell.comAbstractWe are developing autonomous control systems formission-critical domains that require hard real-timeperformance guarantees. To automatically build reac-tive plans that meet these requirements, we use for-mal veri�cation (model checking) techniques to assessthe quality of plans as they are built. The veri�ca-tion process uses precise timed automaton models ofthe executive that will run the resulting reactive plan.This reexive modeling allows our system to formallyverify not just that its plans are correct, but that theywill be executed correctly.1 IntroductionIn hazardous or mission-critical domains such as y-ing aircraft and controlling industrial plants, the em-phasis on safety and predictability makes it di�cult todeploy intelligent or self-adaptive control systems. Inaddition to rigorous performance requirements, thesetypes of applications require �ne-grained certi�cationand extremely high levels of con�dence from their hu-man designers and funders.1.1 Executives Considered HarmfulMost recent work in intelligent autonomous controlhas emphasized increasingly complex plan executives.These complex executives (e.g., RAPs [4], PRS [6], Re-mote Agent Executive [9]) support task decomposition,action sequencing, persistent goals, and powerful worldmodeling capabilities. They provide specialized, verypowerful and concise programming languages. Theadvantage is that engineers can directly encode theirknowledge about task decomposition and interactions,and higher-level planners can build relatively simpleplans that rely on the executive to handle action fail-ures and other forms of uncertainty. The disadvantageis that, because so much detail has been removed fromthe plan and left implicit in the executive, it is not clearthat the plan will be executed as expected.

1.2 Simplify!We take the position that the best way to achieve re-liable, robust, and trustworthy autonomy is throughthe use of a predictable executive supporting simpleexecution semantics that can be directly consideredby a planner. That is, a system in which the plan-ner generates plans satisfying certain veri�able proper-ties (e.g., timeliness and correctness), which are thenpredictably and reliably executed. Ours is essentiallya high-level, control-speci�c, automatic programmingparadigm. The system designer provides a descriptionof primitive sensing and control actions, a descriptionof the domain and its dynamics, and a description ofthe system's goals. The system generates and exe-cutes a plan composed of primitives and combinationfunctions (control logic) to reliably achieve the goals.Once the system code itself has been certi�ed, the onlyfurther veri�cation/certi�cation requirements apply tothe input models of primitives and the domain; eachplan (program/controller) is itself veri�ed automati-cally during generation.CIRCA is an autonomous, self-adaptive control ar-chitecture designed speci�cally for mission-critical do-mains. CIRCA combines on-line planning and schedul-ing systems with a very simple, very predictable real-time plan executive. To increase designer con�denceand ensure that the plans that CIRCA makes arewell-founded, we use formal veri�cation techniques inthe planning process. CIRCA dynamically createstime-constrained reactive control plans (cyclic loops ofTest-Action Pairs, or TAPs) based on its expectationsabout future world states and its own potential actions.CIRCA raises the timeliness aspects of plan executionto the same level of concern as the logical correctnessstandards associated with traditional planning. Thisinvolves not just reasoning about time at a coarse levelduring plan generation, but also detailed timing infor-mation that explicitly accounts for sensing activity, thedelays between sensing and action [8], communication

delays, and the lowest-level details of action selectionand execution.This paper describes how CIRCA uses an explicit,formal model of its plan executive during the planningprocess to verify that the plans it is constructing willbe executed in a timely and correct fashion. Usingthis self-modeling, CIRCA is able to predict and avoidseveral types of undesirable behaviors that may resultfrom a less-rigorous integration of planning and execu-tion models.In fact, CIRCA employs three increasingly complexmodels of plan execution at di�erent times during theplanning process. The models have di�erent levels ofprecision and information needs, and correspondinglydi�erent computational costs.1. Most Abstract: Simple Timing Estimates |When making a decision about which of several pos-sible actions to plan for a state, CIRCA uses its sim-plest model of execution: actions are assumed to takeonly their worst-case execution times, and are con-sidered completely independently. That is, CIRCAdoes not worry about what other actions have beenplanned, or how quickly they must be performed,etc. This level of execution modeling is similar toa traditional planner, except that CIRCA is con-cerned about metric timing information and non-volitional (uncontrollable) events that traditionalplanners cannot handle.2. Less Abstract: Verify Independent TAPs |After each action decision is made, the CSM uses itsformal veri�cation system to con�rm that the plan-ner's estimates of timing relationships are correct.This veri�cation process uses models of plannedactions that are considerably more accurate thanmethod 1 above. This paper is focused on describingthis level of modeling.3. No abstraction: Verify TAP Schedule |The third form of modeling and veri�cation takesplace after an entire plan has been synthesized andit is thought to be correct (preventing failure) anddesirable (achieving goals). By \thought to be cor-rect," we mean checked using the more abstractmodels described above in (1) and (2). When thistest has been passed, the CSM builds an executableTAP schedule and performs a �nal veri�cation pro-cess. With the TAP schedule available, the �nal ver-i�cation process is even more accurate than method2 above. The �nal veri�cation can consider the or-der in which TAPs are run, the actual TAP test ex-pression costs (which can vary non-monotonically asthe plan is being formed and actions are planned formore than one state), as well as the various internaloverhead delays associated with the real executive.We are currently testing the �rst implementation of

this �nal veri�cation process.2 The Controller Synthesis ModuleCIRCA's CSM automatically synthesizes real-time re-active controllers that guarantee system safety whenrun on CIRCA's real-time subsystem. The CSM takesin a description of the processes in the system's envi-ronment, represented as a set of time-constrained tran-sitions that modify world features. These transitiondescriptions are similar to Strips operators with theaddition of timing information and nondeterministicoutcomes. For example, Figure 1 shows several transi-tions taken from a problem where CIRCA is to controlthe Cassini spacecraft in Saturn Orbital Insertion.1The CSM reasons about transitions of three types:Action transitions represent actions performed bythe RTS. These parallel the operators of a conven-tional planning system. Associated with each actionis a worst case execution time, an upper bound onthe delay (�(a) � t) before the action occurs.Temporal transitions represent uncontrollable pro-cesses, some of which may need to be preempted.Associated with each temporal transition is a lowerbound on its delay (�(tt) � t). Transitions thathave a delay lower bound of zero are referred to as\events," and are handled specially for e�ciency rea-sons.Reliable temporal transitions represent continu-ous processes that may need to be employed by theCIRCA agent. For example, when CIRCA turns onan IRU it initiates the process of warming up thatequipment; the process will complete after some de-lay. Reliable temporal transitions have both upperand lower bounds on their delays.2.1 CSM AlgorithmGiven problem representations as above, the controllersynthesis (planning) problem can be posed as choosinga control action for each reachable state (feature-valueassignment) of the system. This problem is not as sim-ple as it sounds, because the set of reachable states isnot a given | by the choice of control actions, theCSM can render some states (un)reachable.Indeed, since the CSM focuses on generating safecontrollers, a critical issue is making failure states un-reachable. In controller synthesis, this is done by theprocess we refer to as preemption. A transition t ispreempted in a state s i� some other transition t0 froms must occur before t could possibly occur. The CSMachieves preemption by choosing a control action that1This example is adapted from Erann Gat's \From theTrenches" [5].

;; Turning on an Inertial Reference Unit (IRU)ACTION start_IRU1_warm_upPRECONDITIONS: '((IRU1 off))POSTCONDITIONS: '((IRU1 warming))DELAY: <= 1;; the process of the IRU warmingRELIABLE-TEMPORAL warm_up_IRU1PRECONDITIONS: '((IRU1 warming))POSTCONDITIONS: '((IRU1 on))DELAY: [45 90];;sometimes the IRUs break without warningEVENT IRU1_failsPRECONDITIONS: '((IRU1 on))POSTCONDITIONS: '((IRU1 broken));; if the engine is burning while the active;; IRU breaks, we must quickly fix problem before;; the spacecraft gets too far out of controlTEMPORAL fail_if_burn_with_broken_IRU1PRECONDITIONS: '((engine on)(active_IRU IRU1)(IRU1 broken))POSTCONDITIONS: '((failure T))DELAY: >= 5Figure 1: Example transition descriptions given toCIRCA's planner.is fast enough that it is guaranteed to occur before thetransition to be preempted.At the highest level of abstraction, the controller syn-thesis algorithm is as follows:1. Choose a state from the set of reachable states (atthe start of controller synthesis, only the initialstate(s) is(are) reachable).2. For each uncontrollable transition enabled in thisstate, choose whether or not to preempt it (anytransition that leads to a failure state must be pre-empted).3. Choose a control action or no-op for that state.4. Invoke the veri�er to con�rm that the (partial) con-troller is safe.5. If the controller is not safe, use information from theveri�er to direct backtracking.6. If the controller is safe, recompute the set of reach-able states.7. If there are no unplanned reachable states (reach-able states for which a control action has not beenchosen), terminate successfully.8. If some unplanned reachable states remain, loop tostep 1.Figure 2 provides a simple example of the processof controller synthesis. Initially (i), there is only onestate reachable, the initial (oval) state. In (ii), theCSM has chosen a control action (dashed line) for the

BACKTRACK

(v)(iv)

(i)

(vi)

(iii)(ii)

s2

s1 s1

s2

s1s1

s3

s2 s2

s3
FAILURE FAILUREFigure 2: A simple example of controller synthesis.initial state (planned states are shaded gray), that willcarry the system to a goal state, s1 (goal states areindicated by bold outlines). There is also a temporaltransition (double line) that may carry the system tos2 . In (iii), we see the CSM decide to assign no-op asthe control action for s1 . This is permissible becauses1 is a safe state (there are no transitions to failurefrom that state), and is desirable because s1 is a goalstate. In (iv), the CSM attempts to complete the con-troller synthesis process by assigning an action to s2that will carry the system to s3 . However, this actiondoes not preempt the transition from s2 to the fail-ure state (black). This triggers a backtrack (v), andthe system chooses an alternative action for s2 (vi)that will carry the system to s1 . This alternative ac-tion does preempt the transition to the failure state,so the controller is safe. All reachable states have beenplanned for, so the controller synthesis process has ter-minated successfully.During the course of the controller synthesis runabove, the CSM will have employed the veri�er mod-ule after each assignment of a control action (i.e., afterii, iii, iv and vi). However, at stages ii, iii and iv,the controller is not complete. At such points we usethe veri�er as a conservative heuristic by treating allunplanned states (e.g., s2 in iii) as if they are \safehavens." Unplanned states are treated as absorbingstates of the system, and any veri�cation traces thatenter these states are regarded as successful. Whenthe veri�er indicates that a CSM-generated controlleris unsafe, the CSM will query it for a path to the dis-tinguished failure state. The set of states along thatpath provides a set of candidate decisions to revise.

3 Modeling for Veri�cationThe temporal model underlying the CSM plan graphsis deceptively complex because it is non-Markovian.We do not include time in the CSM state description(we discuss the rationale for this design decision later).Verifying that a plan is correct requires a path-dependent computation to determine how much timeremains on a transition's delay when it applies to two ormore connected states. E.g., when IRU1 has failed andthe system progresses through several transitions whilefail_if_burn_with_broken_IRU1 continues to apply.To complicate matters further, we cannot assume thatthe planned actions are completely independent: theywill be executed by a real executive with limited abil-ities to sense and react to the world, so the plannedactions will compete for this bounded reactivity.To e�ciently reason about the timing in this worldmodel and account for the executive's bounded reactiv-ity, the CSM relies on an automatic veri�cation system.The veri�er ensures that the controllers that the CSMbuilds are safe. When making action decisions, theCSM uses very simple reasoning, non-path-dependentto make \guesses" about transition preemptions (theonly really important temporal issue in these plans).Then each of these guesses is formally veri�ed using afaithful model of the RTS.3.1 Execution SemanticsThe controllers of the CIRCA RTS are not arbitrarypieces of software; they are intentionally very limitedin their computational power.2 The controller gener-ated by the CSM is compiled into a set of Test-ActionPairs (TAPs) to be run by the RTS. Each TAP hasa boolean test expression that distinguishes betweenstates where a particular action is and is not to be ex-ecuted. The test expression is a function of the planas a whole, because the same action may be assignedto more than one state. A sample TAP for the SaturnOrbit Insertion domain is given in Figure 3.The set of TAPs that make up a controller are as-sembled into a loop and scheduled to meet all theTAP deadlines. The deadlines are computed fromthe delays of the transitions that the control actionsmust preempt.If scheduling does not succeed, the CSMwill backtrack to revise the controller, generating andscheduling a new set of TAPs.3.2 Timed AutomataNow that we have a sense of the execution semanticsof CIRCA's RTS, we briey review the modeling for-malism, timed automata, before presenting the model2These limitations serve to make controller synthesiscomputationally e�cient and make it simpler to build anRTS providing timing guarantees.

#<TAP 2>Tests: (AND (IRU1 BROKEN)(OR (AND (ACTIVE_IRU NONE) (IRU2 ON))(AND (ACTIVE_IRU IRU1) (ENGINE ON))))Acts : select_IRU2
TAP 2 TAP 1 TAP 3 TAP 1TAP 1 TAP 4Figure 3: A sample Test-Action Pair and TAPschedule loop from the Saturn Orbit In-sertion problem.itself. A timed automaton is a �nite automaton aug-mented with timing information.De�nition 1 (Timed Automaton) A timedautomaton A is a tuple
S;si;X ;L; E ; I� where1. S is a �nite set of locations;2. si is the initial state;3. X is a �nite set of clocks;4. L is a �nite set of labels;5. E is a �nite set of edges; and6. I is the set of invariants.Each edge e 2 E is a tuple (s; L; ; �; s0) where s 2 Sis the source, s0 2 S is the target, L � L are the labels, 2 	X is the guard , and � : X ! X [f0g is a clockassignment [3].Timing constraints appear in guards, invariants andclock assignments. In our modeling, all clock con-straints are of the form ci � k or ci > k for some clockci and integer constant k. Informally, guards dictatewhen the modelmay follow an edge, invariants indicatewhen the model must leave a state, and clock assign-ments are used to start and reset processes.It often simpli�es the representation of a complexsystem to treat it as a product of some number of sim-pler automata. The labels L are used to synchronizeedges in di�erent automata when creating their prod-uct.De�nition 2 (Product Automaton) Giventwo automata A1 and A2, A1 =
S1; si1;X1;L1; E1; I1�and A2 =
S2; si2;X2;L2; E2; I2�, their product Apis
S1 � S2; sip;X1 [X2;L1 [L2; Ep; Ip�, where sip =(si1; si2) and I(s1; s2) = I(s1) ^ I(s2). The edges arede�ned by:1. for l 2 L1 \ L2, for every hs1; l; 1; �1; s01i 2E1, and hs2; l; 2; �2; s02i 2 E2, Ep containsh(s1; s2); a; 1 [2; �1 [�2; (s01; s02)i.2. for l 2 L1nL2, for hs1; l; 1; �1; s01i 2 E1 and s2 2 S2,Ep contains h(s1; s2); l; 1; �1; (s01; s2)i. Likewise forl 2 L2 n L1.

s1

s2
l1

l2l3

l4 s1

s2

Action
Images

Transition Models

CommitLatchCommit
EnabledDisabled

Fire T

Enable T
Fire A

A BEnable TDisable T
Disable T

succeed_testB

State space
Image

Uncontrollable
Transition
Images

RTS Model

Base Model

CSM Model

Figure 4: A pictorial summarization of the veri�ermodel and its relation to the CSM model.
∆

∆

IRU1_fails select_IRU2

(FAILURE T)

fail_if_burn_with_broken_IRU1
t >= 5

t <= 3

State 39
(ACTIVE_IRU IRU1)
(ENGINE ON)
(IRU1 ON)
(IRU2 ON)

State 44
(ACTIVE_IRU IRU2)
(ENGINE ON)
(IRU1 BROKEN)
(IRU2 ON)

State 41
(ACTIVE_IRU IRU1)
(ENGINE ON)
(IRU1 BROKEN)
(IRU2 ON)Figure 5: A portion of the CIRCA plan graph show-ing a simple preemptive action.3.3 Modeling CIRCA with TimedAutomataCIRCA translates the CSM model into a set of inter-acting timed automata for a timed automaton veri�er(see Figure 4). The use of multiple automata permitsus to accurately and elegantly capture the interactionof multiple, simultaneously operating processes. Thestarting point of the translation is the CIRCA plangraph, constructed by the CIRCA Controller Synthe-sis Module. The plan graph captures all of the plannedreachable states as well as the planned actions and pre-emption decisions discussed above. A small portionof the plan graph for our running example is shownin Figure 5. In this section of the graph, CIRCAhas predicted the possibility of an IRU1 failure dur-ing an engine burn, and has planned to de�nitely takethe select_IRU2 action before the transition to failurecould possibly occur.As we have outlined above, the CSM's plan graphis a poor representation of the actual execution se-mantics of the CIRCA control system. There is nota single plant taking one action at a time; the environ-ment is made up of a number of processes that are ex-ecuting concurrently. These processes are representedas the nonvolitional transitions in a CSM domain de-

disable_fail_if_burn

select_IRU2

fail_test2 fail_test2

fail_if_burn

enable_IRU1_fails IRU1_fails

enable_fail_if_burn

succeed_test2

State 44

Failure

State 41State 39Figure 6: A portion of the veri�er base model cor-responding to Figure 5.
disable_IRU1_fails

enable_IRU1_fails

IRU1_fails

enable_IRU1_failsdisable_IRU1_fails

EnabledDisabledFigure 7: The veri�er transition model correspond-ing to the event in Figure 5.scription: the temporals, events and reliable temporals.The actions of the CIRCA control system occur con-currently with these environment processes. To modelthe CIRCA plan for veri�cation, we construct severalparallel timed automata that capture these separateprocesses.As illustrated in Figure 4, there is one \base ma-chine," the locations of which correspond to the statesof the CSM model. For example, Figure 6 illustrates aportion of the base model corresponding to Figure 5.The base machine captures the overall state of the sys-tem and its environment. The base machine interactswith a number of \transition machines," that corre-spond to the transitions the CSM reasons about. Thisinteraction is captured by the labels on the edges of thevarious machines; these ensure that the base machinestate reects the e�ect of the transitions and ensurethat the state of the transition machines accurately in-dicate whether or not a given process is enabled in aparticular system state. Note that there are no clocksor timing constraints in the base machine; all timingconstraints will be handled by other automata in thecomposite model.For every uncontrollable transition, there is aseparate timed automaton modeling that process.Figures 7 and 8 respectively illustrate the tran-sition models for the IRU_fails event and thefail_if_burn_with_broken_IRU1 temporal transi-tion to failure. Notice that the event transition is notconstrained by any time bounds. The temporal transi-

enable_fail_if_burn

fail_if_burn

enable_fail_if_burndisable_fail_if_burn

Ct := 0

Ct >= 5

disable_fail_if_burn

Disabled EnabledFigure 8: The veri�er transition model correspond-ing to the temporal transition to failure inFigure 5.
Ca := 0

Ca <= 3

fail_test2

succeed_test2 select_IRU2

Sensors
Latch CommittedFigure 9: A portion of the veri�er RTS model cor-responding to the action planned in Fig-ure 5.tion in Figure 8, on the other hand, uses a unique clockCt to ensure that the failure transition cannot occuruntil it has been enabled for at least 5 time ticks. Eachtemporal transition will have its own separate clock.Again, the edge labels synchronize the transition modelwith the base model, so that if this transition automa-ton is able to execute its fail_if_burn transition, thebase model will recognize that a failure state is reach-able.The RTS model represents all the actions of theCIRCA executive in a single automaton. The RTScycles over the TAP schedule, successively executingeach TAP's test expression and, if the expression re-turns true, the TAP's action. The TAP test expres-sion may be a boolean combination of primitive testsof world features. To ensure that the TAP's test ex-pression perceives only a time-consistent view of theworld, we require that the RTS latch all of the sensorvalues used by a TAP at the start of the TAP.As illustrated in Figure 9, the timed automatonmodel of the RTS moves through a series of \latched"and \committed" states representing this execution cy-cle. A single clock is used to capture the timing con-straints on RTS behavior. After the RTS model movesinto a TAP's latch state (and the clock is reset to zero),the TAP's tests are represented as occurring by twotransitions, a succeed_ and fail_ transition. Theseare synchronized with transitions in the base modelthat indicate whether the current world state satis�esthe TAP's test expression. If so, the RTS model pro-ceeds to a committed state, in which it de�nitely exe-

cutes the TAP's action. The committed state has aninvariant that causes the action to occur before its up-per time bound. After the TAP has either �red or not,the RTS model moves on to the next segment repre-senting the next TAP in the schedule loop.3.4 What We VerifyThere are two classes of safety violations that we lookto the veri�er to detect. The obvious one is a tran-sition to the CSM's distinguished failure state. Thesecond is a failure to successfully preempt some transi-tion that does not carry the system directly to a failurestate. These are transitions that the CSM has decidedto preempt in order to make other states unreachable,possibly to make the controller smaller and more ef-�cient or to avoid other states from which the failurestate will be reachable. To detect the second class ofsafety violations, for each state in the base machine weadd a transition to the distinguished failure state foreach transition that the CSM intends to preempt.3.5 Final Veri�cation of CompleteControllerThe above model correctly represents the interactionbetween the environment and the RTS. However, it isnecessarily only heuristic in nature, until we have acomplete plan. The reason is that until we know theentire plan, we cannot know the exact TAP tests orthe shape of the TAP loop (see Figure 3), and hencecannot know the true delays before actions occur. Cur-rently, we take the admissible, but overoptimistic, stepof assuming the agent will immediately choose to takethe action for its current state.Once the controller synthesis process has completed,and the TAP loop has been generated, we run the ver-i�cation algorithm one �nal time. At this time, weknow the exact shape of the TAP loop, and hence theexact execution semantics of the plan. We do not havespace here to outline the TAP loop translation process;details will be given in the full paper.4 Related WorkAsarin et al. [2] developed a similar, game-theoreticmethod of synthesizing real-time controllers that doaccount for time and uncontrollable events. This workstopped at the design of the algorithm and derivationof complexity bounds; to our knowledge it was not im-plemented. This approach has been implemented forthe special case of automatically synthesizing sched-ulers based on Petri Net designs [1], using the Kronosmodel-checking program. Our work di�ers in beingaimed at a di�erent class of control problems, involv-ing controlling devices in an active environment. We

also di�er in constructing purely reactive (memoryless)controllers.Kabanza [7] has developed work very similar to oursin scope and intention. He incorporates time by ef-fectively imposing a system-wide clock and progressingthe controller one \tick" at a time. In control problemswith widely varying time constants, this approach willlead to an explosion of states; we have adopted model-checking techniques that minimize this state explosion.5 ConclusionsThe CIRCA CSM is a novel application of automaticveri�cation systems to automatic synthesis of con-trollers (planning). Previous attempts to use auto-matic veri�ers in planning have limited themselves tosimpler execution semantics and/or simply assumedthat the plans could be implemented correctly. Oursystem has a rich model of the execution of its timedcontroller, that reects the behavior of a hard real-timeexecutive.While the examples shown here are quite small,it should be clear that this translation into timedautomata is highly verbose. Consider, for example,that every state of the base model must include onesucceed_ or fail_ labeled edge for each planned TAP.Furthermore, this multi-automaton model cannot beimplemented in a naive way, as this leads to a statespace explosion. Our implementation uses a more ef-�cient algorithm that exploits features of the CIRCAdomain model and lazily builds the product automa-ton, producing speedups of two orders of magnitudeon our test problems. Details of the algorithm will bepresented in forthcoming publications.AcknowledgmentsThis material is based upon work supported byDARPA/ITO and the Air Force Research Laboratoryunder Contract No. F30602-00-C-0017.References[1] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S.Tripakis,and S.Yovine, \A framework for scheduler synthesis,"in Proceedings of the 1999 IEEE Real-Time SystemsSymposium (RTSS '99), Phoenix, AZ, December 1999,IEEE Computer Society Press.[2] E. Asarin, O. Maler, and A. Pneuli, \Symbolic con-troller synthesis for discrete and timed systems," in Pro-ceedings of Hybrid Systems II, P. Antsaklis, W. Kohn,A. Nerode, and S. Sastry, editors, Springer Verlag, 1995.[3] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, \TheTool KRONOS," in Hybrid Systems III, 1996.[4] R. J. Firby, \An Investigation into Reactive Planningin Complex Domains," in Proc. National Conf. on Ar-ti�cial Intelligence, pp. 202{206, 1987.

[5] E. Gat, \News From the Trenches: An Overview of Un-manned Spacecraft for AI," in AAAI Technical ReportSSS-96-04: Planning with Incomplete Information forRobot Problems, I. Nourbakhsh, editor. American Asso-ciation for Arti�cial Intelligence, March 1996. Availableat http://www-aig.jpl.nasa.gov/home/gat/gp.html.[6] M. P. George� and F. F. Ingrand, \Decision-Making inan Embedded Reasoning System," in Proc. Int'l JointConf. on Arti�cial Intelligence, pp. 972{978, August1989.[7] F. Kabanza, \On the Synthesis of Situation ControlRules under Exogenous Events," in Theories of Ac-tion, Planning, and Robot Control: Bridging the Gap,C. Baral, editor, number WS-96-07, pp. 86{94. AAAIPress, 1996.[8] D. J. Musliner, E. H. Durfee, and K. G. Shin, \Predic-tive Su�ciency and the Use of Stored Internal State,"in Proc. AIAA/NASA Conf. on Intelligent Robots inField, Factory, Service, and Space, March 1994.[9] B. Pell, E. Gat, R. Keesing, N. Muscettola, andB. Smith, \Robust Periodic Planning and Executionfor Autonomous Spacecraft," in Fifteenth InternationalJoint Conference on Arti�cial Intelligence, 1997.

