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Austin, TX, 2000MACBeth: A Multi-Agent Constraint-Based PlannerRobert P. Goldman, Karen Zita Haigh, David J. Musliner, Michael PelicanHoneywell Technology CenterMinneapolis, MN 55418fgoldman, khaigh, muslinerg@htc.honeywell.comIntroductionMACBeth is a constraint-based tactical planning en-gine for multi-agent teams. MACBeth is designed fordomains in which a human user must quickly specify amission to a team of autonomous agents. In these do-mains, \puzzle-mode" thinking to come up with novelplans is not important; the key task is to rapidly andaccurately tailor existing plans to novel situations. Tothis end, MACBeth combines hierarchical task net-work planning with modern constraint reasoning tech-niques, into a mixed-initiative planning system. Thismixed-initiative planning system is driven by a graph-ical user interface inspired by a \playbook" metaphor,to generate, check and modify plans for teams of het-erogeneous agents. MACBeth has been tested in tworobotics domains: Unmanned Combat Aerial Vehicles(UCAV) sorties and Tactical Mobile Robotics (TMR).MACBeth is designed for domains in which a hu-man user must quickly specify a mission to a team ofautonomous agents. To do this, the user must be ableto simply and easily specify a high-level \play" for theteam to perform. The user must, however, be ableto tailor this plan; completely automatic planning isnot acceptable. In every tactical planning scenario, thehuman user brings context information to the planningprocess that is not directly available to the automation.For example, in the UCAV domain, the wing comman-der must identify the objective of the sortie. In somecases, the commander may want to add further restric-tions on the behavior of the UCAVs. For example, hemight indicate that the UCAV should circumnavigateairspace belonging to a noncombatant nation, or selecta di�erent attack formation based on his own skills andpreferences.In tactical applications, the mission planning systemmust ensure that plans are feasible. An attempt by theuser to specify an infeasible plan should be 
agged bythe planning algorithm as soon as possible, so that shecan retract a decision or reconcile con
icting objec-tives early in the planning process. For example, in aUCAV domain, the commander might initially assigntwo widely separated reconnaissance targets to a sin-

gle UCAV with insu�cient fuel to reach both locations.The planner should identify the inconsistency quickly,ideally before it expands planning e�ort on plan de-tails, such as determining �nal approach routes for thetwo targets, and immediately alert the user that shemay need to modify her objectives or the allocation ofher resources.The combination of HTN planning, constraint pro-gramming and playbook GUI was chosen to meet theseneeds. HTNs provide a representation for plans thatis relatively easy for people to understand. They canalso support very e�cient planning, when the abilityto construct novel plans (completeness) is less of inter-est. The HTN plans provide a skeleton on which toperform constraint reasoning.Constraints onMACBeth's plans capture the com-plex relationships between (otherwise unrelated) tasks,allowing MACBeth to reason about the tradeo�s ofdi�erent resource allocations. MACBeth's constrainthandling assists its users in resource management andin appropriately assigning mission roles to team mem-bers, supporting human planners who must manageheterogeneous teams. The user does not need to reasonabout which agent does which task, or how to reallo-cate agents in order to achieve her goals.A domain-speci�c \playbook" interface allowsMACBeth's user to control a team of agents at thelevel of task and basic requirements on that task. Us-ing the playbook GUI, the user speci�es requirementsto the planner, which will generate a plan for the teamof agents. This interface allows for multiple degrees ofadjustable autonomy, providing the user with varyinglevels of control depending on his requirements.The playbook GUI does not impose much cognitiveor perceptual load on the system's user. The auto-matic consistency-checking supplied by MACBeth'sconstraint-handling also simpli�es mission planning,e.g., ensuring that a planned mission will not exceedfuel supplies.
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FlyForm Takeoff FlyDispFigure 1: A hierarchical task decomposition for aUCAV domain. Ovals represent and-nodes; rectangles represent or-nodes.Mission Task ModelWe use Hierarchical Task Networks(HTNs) as theframework to encode, track and dynamically modifythe plans, goals, tasks and objectives speci�ed by hu-mans. HTNs provide a number of advantages: Theyprovide a representation that is relatively understand-able by human users, for mixed-initiative planning. Al-though in the worst case, HTN planning is more di�-cult than, e.g., Strips planning (Erol, Hendler, & Nau1994a), in practice it is often more e�cient (Wilkins1988), as in our application. Also, unlike \�rst prin-ciples" planners, which choose actions based on theire�ects, HTNs make it easy to specify actions to bedone, or goals to be achieved \just because" | e.g., inthis case I know that taking an aspirin is a good thingto do, although I don't have a good model of the e�ectsof the action. Most important for this discussion, theHTNs provide a structure for encoding constraints andincorporating them as appropriate.In Hierarchical Task Network (or \decomposition")planning, the problem is to 
esh out a sketchy planfor the planning problem, rather than to build a pathfrom an initial state to some member of a goal stateset. Part of an HTN for the UCAV domain is shownin Figure 1. In the initial state of an HTN planningproblem, one has a task network that speci�es only thegoal to be achieved; in the example of Figure 1, say anetwork with only a \Mission" node. The problem isto build a full tree down from the initial node through\methods" and \goals." Methods (or operators) areand nodes that provide a means of achieving somegoal, in terms of a set of steps (or sub-goals). E.g.,to perform a \Lethal SEAD" mission, you must �rst\Ingress," then \Strike" and �nally \Egress." Goalsare or nodes that specify a set of methods that areapplicable. For example, one can perform \Ingress"
ying in formation or dispersed.The problem of HTN planning is one of constrainedand/or tree search. Constraints may be attached to

nodes in the initial network (e.g., fuel supply is 10,000gallons). Method de�nitions specify the constraints tobe created when the operator is instantiated. Con-straints can be speci�ed between tasks and their par-ents in the abstraction hierarchy, their siblings, andtheir children, or on the values of their parameters(perhaps as related to the parameters of their parents,siblings, or parents). For example, the fuel used duringthe ingress phase of a aircraft sortie will be greater thanor equal to the sum of the fuel used by its children. InFigure 1 we graphically indicate temporal precedenceconstraints.Playbook GUI and User ConstraintsThe task model is designed to enable easy intuitivehuman control. This representation allows us to de-velop a playbook GUI (Miller & Goldman 1997), a nat-ural way for the human to interact with the planner.The playbook concept was in
uenced by sports play-books, where each player knows the broad outline of a\play", and each play has been well-practiced by theteam. During an actual game, the play is \tailored" bya coach or team captain to meet the conditions on the�eld.In theMACBeth paradigm, \calling a play" meansthat the human user (analogous to the coach) declaresthat a certain task needs to be accomplished. Theuser can \tailor" the play by adding constraints andrequirements speci�ed by operating conditions. Tailor-ing a plan essentially allows for adjustable autonomyon the robots. In this manner, the user can task au-tomation subsystems to behave appropriately for theperformance of that task.As the planner expands the plan, it displays the con-sequences of planning decisions to the user, who canretract previous choices, or make better-informed de-cisions about available choices.A playbook GUI should be designed to allow dif-ferent levels of control depending on the domain, taskand the target user. As the user's knowledge and skillsdecrease, the robot's autonomy needs to increase. InTMR, the target user is a soldier squad leader or robotoperator within a squad. The plays contain internaltiming constraints, and certain actions (e.g. take aphoto) have related hardware requirements. Most re-maining constraints are map- or environment-related,including for example navigation waypoints and goallocations (speci�ed by the user) and required locomo-tion capabilities (speci�ed by the route planner).Figure 2 shows a sample playbook GUI for the TMRdomain. In the upper left corner, the GUI displaysthe list of available plays. In the lower left corner,the GUI shows status information for a selected robot.The right hand side displays the map, the home base



Figure 2: Playbook GUI for a TMR deployment domain.(triangle), the robots' current locations (�lled circles),and the robots' goal locations (clear circles). Whenthe user selects a play, he can then either (1) clickExecute, and MACBeth will generate and execute aplan, or (2) click Tailor, andMACBethwill generatea (constraint-free) plan, and then allow the user to setconstraints and otherwise tailor the play to the currentsituation, executing the (constrained) plan only afterthe user clicks Execute.The TMR GUI was written in Java for operationinside a web browser. The UCAV GUI was writ-ten using Tcl/Tk and the daVinci graph visualizationtool (Frohlich & Werner 1997).MACBeth PlanningMACBeth uses Hierarchical Task Network (HTN)planning (Erol, Hendler, & Nau 1994b; Wilkins 1988)and constraint logic programming techniques (Ja�ar& Michaylov 1987; Hentenryck 1989) to generate mis-sion plans that meet speci�cations provided by a hu-man user. MACBeth analyzes the user's speci�ca-tions for feasibility, and automatically generates mis-sion plans consistent with the user's requirements andrestrictions. MACBeth will also prefer optimal planswhen multiple alternatives are consistent and feasible.The design of the mission task model ensures thatthe broad outline structure of a mission is known be-fore the planning has begun. MACBeth's job is toassist the user by managing the resources, deadlines,and constraints between alternative actions during thedevelopment of the plan. The planner represents theselimited quantities as constraints on and between in-dividual plan operators, and manages them with aninternal constraint management engine.

MACBeth di�ers from existing \strategic" plan-ning systems in that decomposition and method choiceis not the primary focus of the planning activity.Strategic planning systems (e.g. (George� & Lansky1987; Nourbakhsh 1997; Veloso et al. 1995)), on theother hand, typically construct plans based on a studyof the preconditions and e�ects of actions, and hencemay construct plans whose steps are not well-knownto the user. Instead of focusing on such \puzzle-mode"thinking, which is not appropriate in the tactical set-ting,MACBeth focuses on handling the complex con-straints needed to manage resources such as fuel, tofollow communications doctrine, to synchronize multi-ple agents, and to in
uence role assignments. Previ-ous planning systems, even constraint-centered plan-ners like O-Plan2 (Bienkowski & desJardins 1994;Pell et al. 1997; Tate, Drabble, & Dalton 1994), do notincorporate modern constraint-solving techniques, andfew are easy to integrate with special-purpose solvers.On the other hand, constraint programming pro-vides a unifying framework in which to address prob-lems like resource management, synchronization, etc.,but does not provide a convenient way of specifyingsuch problems. The HTN planning framework pro-vides a representation that enables MACBeth to sys-tematically compose hybrid constraint problems thatintegrate resource management, role assignment andmethod choice.Combining HTN planning and constraint propaga-tion provides an e�cient way to specify a wide vari-ety of problems. MACBeth is implemented in SIC-Stus Prolog, using Constraint Logic Programming forFinite Domains (clp(FD)) to manage time and other



resources.1Planning ProcessMACBeth uses HTN planning to 
esh out the high-level (non-primitive) tasks in the plan. Whenever theplanner identi�es a non-primitive task in the plan, itdecides whether the node can be decomposed by ap-plying one or more methods to the task. In the casethat more than one method applies, the planner devel-ops all of the alternative paths. Infeasible alternativesare pruned from consideration.At each step in the planning process, MACBethdetermines the feasibility of the current partially spec-i�ed plan. As each task is expanded, constraints fromthe corresponding method are added to the clp(FD)constraint management engine. As the plan is built,constraints propagate both up, from sub-tasks to tasks,and down, from tasks to their expansions. This con-straint propagation process enables the planner toquickly identify 
aws in the plan. If some methodsfor achieving a task do not meet the user-imposed mis-sion constraints, then MACBeth will eliminate thosemethods from consideration.For example, if there are two possible attack routesfor an aircraft,MACBeth will verify that both routesmeet fuel and timing constraints. If both routes meetall constraints, then MACBeth will select the betterof the routes (based on some previously-speci�ed eval-uation criteria). If one route requires too much fuelor takes too long, then MACBeth will eliminate thatroute from consideration, selecting the feasible route. Ifneither route meets the user's constraints, then MAC-Beth will tell the user that his plan is infeasible.MACBeth can also use constraint managementtechniques to manage resources that are widely sepa-rated in use, assuming that the constraints were spec-i�ed in the task model. For example, in the TMR do-main, if one task requires a certain hardware capabil-ity, then the constraint store will keep track of whichrobots could be assigned to that task. This kind ofconstraint is automatically propagated throughout theplan, allowing MACBeth to e�ortlessly detect com-plex resource interactions that most other planningsystems could only detect with di�culty. For exam-ple, if a \guard" task requires a colour camera, androbots Alpha and Beta both have colour cameras, thenMACBeth will ensure that one of these two robots isassigned to the \guard" task. If Beta is later assigned adi�erent, unrelated task, theMACBeth will automat-ically assign Alpha to the \guard," with no additionalintrospection or backtracking.1We expect later to incorporate more 
avors of CLP toincorporate di�erent kinds of resources, etc., but clp(FD)is adequate for our current applications.

Another bene�t of the constraint management en-gine is that MACBeth can easily coordinate di�erenttasks. If two di�erent tasks need to be, say, initiatedat the same time, the designer can easily specify thistiming constraint. During plan expansion,MACBethwill bind the two start times together. Any variablethat a�ects the start time of either action will hencea�ect the start time of both actions. Each time sucha variable is modi�ed, MACBeth's constraint enginewill propagate the the e�ects throughout the plan. Inthis way, for example, two TMR robots could easily beinstructed to enter a building from di�erent doors atexactly the same time. If one arrives at its door beforethe other, then the �rst one will wait until the secondone is ready.Table 1 outlines the planning process. The core ofMACBeth's resource management capabilities lie in thefunction instantiate variables(). Prolog's variable uni-�cation mechanism allows constraints to 
ow through-out the tree as speci�ed by the connections describedin the operators (lines 11 through 19). Note that foran or-node, variables are copied rather than uni�edwith the value of the parent node (lines 16 and 17);in this manner, MACBeth can expand each methodindividually without interference from other unrelatedmethods. When the user chooses between methods (orMACBeth selects one in preference to the others), theconstraints are propagated up to the parent and hencethrough the rest of the tree. The clp(FD) constraintmanagement engine then stores and keeps track of thee�ect of constraints on the variables (lines 20 and 21).The planner uses constraint propagation techniquesto manage resources, coordinate the individual plays,to ensure that user-imposed constraints are met, and toopportunistically prune regions of the plan space whenchoices in one part of the plan force choices in anotherpart.We have not constructed proofs of soundness andcompleteness for the algorithm, but we believe it tobe so. The tree search in generate_plan_treewill besound and complete as handled by Prolog's depth-�rst-search, and we have not added excess constraints thatto the clp(FD) engine that would prune any correctplans. Note, however, that the planner may be viewedas incomplete with respect to an understanding of itsdomain, because the domain knowledge engineer mayforce certain parameter choices to be made by the user.For example, the knowledge engineer in the UCAV do-main stipulated that the user must specify the targetof an airstrike, rather than permitting the planner tochoose this location at its own discretion! User speci-�cations are discussed in the following section.



1. generate plan tree(Node)2. if Node has mandatory, unbound variables3. cannot expand node until value is speci�ed by user4. else if Node has available methods (Or-node)5. foreach available method,6. create a Child of Node for method7. instantiate variables(\or-node", Child,Node )8. generate plan tree(Child)9. else if Node has required steps (And-node)10. foreach available step,11. create a Child of Node for step12. instantiate variables(\and-node", Child,Node )13. generate plan tree(Child)14. else primitive operator15. instantiate variables(Type, Child, Parent)16. if Type is \or-node" foreach variable in Parent to be passed to Child,17. Copy the Parent's value to the Child's value.18. else if Type is \and-node" foreach variable in Parent to be passed to Child,19. Unify the Parent's value to the Child's value.20. constrain any typed parameters in Child21. apply constraints speci�ed in operator to variables of ChildTable 1: The core of MACBeth's planning process.Handling User Speci�cationsAfter every user action, MACBeth incorporates theuser's decision into the current plan. User actionsshape the direction of the evolving plan. User actionsfall into three classes:1. specifying unde�ned variables,2. choosing between alternative methods for task com-pletion, and3. introducing timing or ordering constraints.By specifying the task parameters, the user shapesthe plan's broad outline and identi�es important taskcharacteristics. Typical parameters provided by theuser include mission priorities, available equipment,and speci�c targets. By choosing between alternativemethods for task completion, the user can express apreference between feasible plans. Finally, by intro-ducing timing constraints the user can specify teamcoordination, or a preferred sequence of tasks.When the planner reacts to a user action, there areseveral possible outcomes. Two are failures:1. The planner cannot �nd an appropriate expansion.The attempt to expand the plan fails.2. The constraints on the new method violate existingconstraints (e.g., a method requires satelite commu-nication between aircraft but no satelites are avail-able in this region).A third just indicates that the planner needs more as-sistance from the user:

3. The planner determines that there is not enough in-formation available to expand this node (e.g., pos-sible ingress formations cannot be determined untilthe number of aircraft is speci�ed).A �nal alternative is that the planner manages toincorporate the user action successfully. Such successcan trigger considerable action by the planner:1. The new constraints eliminate some choices for theexpansion of other nodes. This elimination may al-low the planner to further expand that part of theplan.2. The new constraints su�ciently restrict the range ofa parameter so that another task in the network canbe expanded.3. The expansion of the task creates new non-primitivetasks that may be expandable.4. A primitive (unexpandable) task is created.Some constraints are mandatory; that is, MAC-Beth will not execute a plan until the information hasbeen supplied. For example, the user must specify atarget location in the UCAV domain.Whenever a non-mandatory constraint has not beensupplied by the user, MACBeth will assume it hascomplete freedom of choice. For example, unless theuser speci�es location to guard, MACBeth will as-sume that the TMR robots are free to explore unknownspace.



Similarly, when there are multiple paths through theplan tree (i.e. multiple possible methods or availableresources) that will accomplish the task and that meetconstraints, MACBeth will arbitrarily select whichone to attempt. If a preference function has been sup-plied (e.g. select the shortest route, select the robotwith the most power), MACBeth will select the pre-ferred option.As the user supplies more and more constraints, theplanner's freedom is more and more reduced. Essen-tially, this relationship speci�es degrees of adjustableautonomy. At the highest level, the user needs to onlysupply mandatory constraints. MACBeth will thenassume full autonomy, and generate a plan accordingly.At an intermediate level (the lowest while still using theplaybook), the user speci�es every constraint, includ-ing which of multiple alternative methods to select toaccomplish a task. The robots are still free to avoid ob-stacles and navigate between waypoints autonomously.Finally, at the lowest level of robot control, the user cantele-operate the robot, giving the robot no freedom atall.The planner currently only invokes the labeling pro-cess when the plan is to be completed. The labelingprocess assigns values to those variables for which con-straint propagation has not forced a choice. Variableassignment may not be forced either because the exist-ing set of constraints does not dictate a single value forthe variable or because constraint propagation is in-complete. For the latter case, a co-process using label-ing could provide further pruning of inconsistent planchoices. We have not implemented this alternative be-cause Prolog's constraint propagation is complete forthe class of constraints we have used in our domains(i.e., any value that is labeled as consistent is, in fact,consistent).Integration With SpecializedProblem-SolversThe structure of the MACBeth planner providesa straightforward way to incorporate special-purposeproblem solvers like a route planner. When a problem-solver's inputs can be mapped to plan operator param-eters, and its interactions with other operators can bedescribed using constraints, it can be integrated withMACBeth.In the UCAV domain, the route planner uses a dy-namic programming algorithm to �nd a minimal alti-tude trajectory between two locations, that is, one thatresults in minimal exposure to enemy radar and visualdetection. The resulting path determines the minimum
ight time and fuel requirements for the action, whichare posted as constraints on the plan. If the 
ight timeor fuel requirements of the action violate current con-
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