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Austin, TX, July 2000Planner Feedback: NIL is Not Enough(Extended Abstract)David J. MuslinerAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418musliner@htc.honeywell.comIntroductionIn the beginning, there was always a plan. Mon-keys and bananas, cannibals and missionaries,blocks world... the planner just had to be smartenough, and look hard enough, and there was aplan to be found. Even in \real world" problems,there was always a plan: you can always �nd a wayto get from Princeton to Brown, even if the airportis closed. If the planner couldn't �nd a plan, eitherthe planner was broken or the domain descriptionwas broken. Building complex domain descrip-tions was still hard, because planners would saylittle about why they couldn't build a plan. Butnow the problem is much harder.Now, planners are going to control spacecraftand re�neries and autonomous combat aircraft,and there may not always be a plan. Parts break,sensors fail, accidents happen, adversaries thwartintentions. The planner (or at least the overallagent control system) will have to make tradeo�s:if the goal to take high-resolution pictures can-not be satis�ed, take low-resolution pictures; if thepump breaks and temperature skyrockets, reducethroughput; if the enemy may shoot you down, 
yas carefully as you can.When there may not be a plan that accom-plishes the goals perfectly, two new problems arise.The �rst obvious problem is \how do we get theplanner to make the requisite tradeo�s?" The sec-

ond problem, which is less obvious but probablyat least as important for real-world applications,is \When the planner can't �nd a perfect plan,how do we know if the domain description is rightor not?" One key to addressing both problems isplanner feedback.Context: Self-Adaptive CIRCATo place this discussion in context, let's con-sider some examples based on the desired be-haviors of the Self-Adaptive CIRCA (SA-CIRCA)system (Musliner et al. 1999). Our goal hereis not to describe SA-CIRCA in detail; rather,we give a brief overview of the system conceptsand refer the interested reader to details availablein other papers (Musliner, Durfee, & Shin 1993;1995; Musliner et al. 1999). Roughly illustratedin Figure 1, SA-CIRCA is designed to controlsystems interacting with adversarial environmentsthat pose hard real-time deadlines: that is, do-mains in which it is possible to incur catastrophicfailures by not acting quickly enough. For thepurposes of this discussion, the important pointis to understand the roles of the Adaptive Mis-sion Planner (AMP) and the Controller SynthesisModule (CSM).The basic idea is that the AMP conducts long-term, highly abstract planning and control of theoverall mission of the system, and directs the CSMto develop suitable reactive controllers for di�er-
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The WorldFigure 1: Within SA-CIRCA, the AMP andCSM engage in a negotiation processto derive the best plans using theavailable deliberation and reaction re-sources.

ent phases of the mission. For example, an un-inhabited combat aerial vehicle (UCAV) missionmay consist of ingress, attack, and egress phaseswhich each require di�erent reactive control plansto adjust the system's behavior in response to dif-ferent types of threats and failures. The AMP for-mulates problem con�gurations for each of thesephases, and asks the CSM to generate plans thatcan guarantee to avoid failure and achieve theintermediate goals. In the UCAV example, theingress phase problem con�guration might spec-ify the types of threats expected along the ingressroute (potential failures) and the endpoint (goal)of the ingress. The CSM contains a di�erent sortof planner: for each phase, it tries to build atime-constrained reactive plan that is guaranteedto preserve system safety (while achieving othergoals) by accounting for the environment, nonde-terminism, and external adversarial agents.We designed SA-CIRCA with the assumptionthat its application domains will be overcon-strained; that is, the system will not always beable to guarantee that it will both keep the sys-tem safe (avoid catastrophic failures) and achieveall the goals. In overconstrained situations, wewant SA-CIRCA to \self-adapt" by automaticallydeciding on appropriate tradeo�s between safetyand goal-achieving behavior. For example, in theUCAV application we want SA-CIRCA to recog-nize that in some situations it may not be ableto guarantee responses to all the possible types ofthreats (e.g., di�erent surface-to-air missiles) andso it should account for only the most-probabletypes, building plans that have a non-zero riskbut still achieve the overall goals of attacking sometarget.To that end, we are developing a broad arrayof methods that the AMP can use to adjust andtrade o� the structure, goals, and safety concernsof the problem con�gurations sent to the CSM.This behavior characterizes the fundamental dif-ference between the AMP and CSM. The CSM



does not make performance tradeo�s, it tries tobuild a controller that preserves safety against allthe threats it is told about, and meets all the goalsit is given. The AMP makes tradeo�s, alteringthe CSM problem con�gurations when the CSM isnot successful. The AMP can reduce the numberof goals the CSM is pursuing, reduce the threatpossibilities the CSM must be concerned with, orperform a wide variety of more subtle modi�ca-tions to the CSM problem con�gurations to makethem easier or harder to solve.To guide the application of these tradeo� meth-ods, the CSM must provide useful feedback to theAMP. In the current implementation, the CSMeither succeeds or fails, but no additional mean-ingful feedback data is provided. This abstractis meant to describe some concepts for improvedCSM feedback, and their utility both for mak-ing better automatic tradeo�s and for simplifyinguser-level debugging of planning models.Planner FeedbackThere are several possible results of running theCSM on a particular problem con�guration:Complete Success | The CSM has success-fully built and scheduled a reactive control planthat ensures safety and also achieves all of thegoals. Note that in this situation it may stillbe useful to get feedback more signi�cant thansimply \success!" Telling the AMP how di�-cult the problem was can help the AMP opti-mize the allocation of reactive resources to theoverall mission. The AMP may have initiallyposed a simpli�ed problem con�guration to es-tablish a baseline, and feedback on the level ofproblem di�culty may help in maximizing thecomplexity of the next, revised con�guration.For example, suppose the AMP has submitteda problem con�guration for the entire ingressphase accounting for both ship-to-air threatsand ground-to-air threats, since the ingress path
ies over a littoral region before going \feet dry."

Furthermore, suppose that the SSP was unableto build a safety-preserving plan for that full-complexity con�guration, so the AMP has cho-sen to eliminate the lowest-probability threats(say, the ship-to-air missiles). This simpli�edcon�guration results in a successful plan, andthe AMP can be satis�ed with that. However,it might also get feedback information from theSSP showing that the plan now spends a dis-proportionate amount of e�ort throughout theingress phase worrying about threats that areonly present in the later, over-land part of thephase. This could trigger an AMP heuristicsuggesting that the ingress phase be split intotwo separate phases, one over land and one overwater. The resulting sequence of two smaller,phase-speci�c plans may yield a much higherprobability of mission success. Note that whilethis example results in a phase partition relyingon geometric characteristics, the concept itselfis not tied to geometry or other domain-speci�ccharacteristics; the AMP can divide the problemspace along any dimensions or feature values itchooses.Partial Success | The CSM has built andscheduled a reactive control plan that ensuressafety, but is not capable of achieving all of thegoals. Again, feedback can help the AMP assesswhether additional goals or complexity can beadded to the problem.Planning Failure | The SSP has examinedthe given problem and found an unresolvablefailure; it cannot �nd a plan that will guaranteeto avoid all of the possible failures. Feedbackwill help decide what types of tradeo�s shouldbe made.Scheduling Failure | Although the SSP wasable to �nd a safety-preserving plan, the CSMScheduler module was unable to schedule theplanned reactions to meet all of the speci�edtime constraints. Feedback about this type offailure can point to speci�c types of problem



modi�cations (such as relaxing worst-case tim-ing concerns).Timeout Failure | Either during the planningphase or scheduling phase, the CSM ran out oftime for computing a controller, and no �nishedproduct was returned. Feedback in this situ-ation can help the AMP understand the rootcause of the excess problem complexity that de-feated the CSM.In addition to categorizing its results into thesescenarios, the CSM should provide additionalfeedback to guide problem con�guration adjust-ments. To date, we have identi�ed the followingtypes of feedback as feasible and potentially usefulto the AMP.Chokepoints | A chokepoint or bottleneckstructure in the state space is a planned ac-tion that leads between two regions of statespace having di�erent characteristics (i.e., dif-ferent likely threats). This structure indicatesthat breaking the single current problem con-�guration into two separate phases (with di�er-ent problem con�gurations) may help make thesmaller phases easier. Our research teammatesat the University of Michigan are currently in-vestigating ways of identifying these structuresin SSP plans.Di�cult Threats | A single threat that oc-curs repeatedly throughout a region of the statespace may make the problem di�cult or infea-sible. If the SSP can identify which threatsare most di�cult to handle, the AMP can usethis information to guide restructuring of thephases, perhaps to avoid these particularly dif-�cult threats entirely.Schedulability Culprits | If the SSP builds asafety-preserving state-space plan but the reac-tions it requires cannot all be scheduled to exe-cute within their timing constraints, the Sched-uler may be able to provide general feedbackabout the level of overutilization (McVey et al.

1997). In addition, the Scheduler may be ableto identify speci�c individual planned reactionsor small sets of reactions that are placed undersuch tight time bounds that they bear primaryresponsibility for the inability to build a sched-ule.As noted earlier, these types of feedback shouldbe useful both for on-line self-adaptation and forhelping the user (application engineer) debug do-main descriptions during the o�-line knowledgeacquisition process.Related WorkThe notion that a planner must provide complexand useful feedback is relatively new; most plan-ning work remains situated in fully-autonomous,non-adaptive settings. A notable exception is thework on mixed-initiative planning, which focuseson tying automatic planning to human-generatedgoals, and collaboratively making decisions inwhich humans remain involved. Mixed-initiativeplan generation requires an ability to solve cer-tain aspects of the planning problem automati-cally, while deferring other functions to the user.Complex query/response dialogue abilities allowthe planner to interact with the user to clearlyestablish intent and mutual understanding (Allen1983). Informative feedback from the planner tothe human is essential to the mixed-initiative plan-ning process. This suggests that results and ap-proaches from mixed-initiative planning may mapdirectly to our problems of AMP/CSP collabo-rative planning. And, while originally conceivedof as useful for building plans collaboratively, themixed-initiative concepts may be equally useful foracquiring correct planning domain models collab-oratively. ReferencesAllen, J. 1983. Recognizing intentions from nat-ural language utterances. In Brady, J. M., andBerwick, R. C., eds., Computational Models ofDiscourse. Cambridge, Mass.: M. I. T. Press.
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