Working Notes of the AAAI Workshop on Representational | ssuesfor Real-World Planning Systems
Austin, TX, July 2000

Planner Feedback: NIL is Not Enough
(Extended Abstract)

David J. Musliner
Automated Reasoning Group
Honeywell Technology Center

3660 Technology Drive

Minneapolis, MN 55418
musliner@htc.honeywell.com

Introduction

In the beginning, there was always a plan. Mon-
keys and bananas, cannibals and missionaries,
blocks world... the planner just had to be smart
enough, and look hard enough, and there was a
plan to be found. Even in “real world” problems,
there was always a plan: you can always find a way
to get from Princeton to Brown, even if the airport
is closed. If the planner couldn’t find a plan, either
the planner was broken or the domain description
was broken. Building complex domain descrip-
tions was still hard, because planners would say
little about why they couldn’t build a plan. But
now the problem is much harder.

Now, planners are going to control spacecraft
and refineries and autonomous combat aircraft,
and there may not always be a plan. Parts break,
sensors fail, accidents happen, adversaries thwart
intentions. The planner (or at least the overall
agent control system) will have to make tradeoffs:
if the goal to take high-resolution pictures can-
not be satisfied, take low-resolution pictures; if the
pump breaks and temperature skyrockets, reduce
throughput; if the enemy may shoot you down, fly
as carefully as you can.

When there may not be a plan that accom-
plishes the goals perfectly, two new problems arise.
The first obvious problem is “how do we get the

planner to make the requisite tradeoffs?” The sec-

ond problem, which is less obvious but probably
at least as important for real-world applications,
is “When the planner can’t find a perfect plan,
how do we know if the domain description is right
or not?” One key to addressing both problems is
planner feedback.

Context: Self-Adaptive CIRCA

To place this discussion in context, let’s con-
sider some examples based on the desired be-
haviors of the Self-Adaptive CIRCA (SA-CIRCA)
system (Musliner et al. 1999). Our goal here
is not to describe SA-CIRCA in detail; rather,
we give a brief overview of the system concepts
and refer the interested reader to details available
in other papers (Musliner, Durfee, & Shin 1993;
1995; Musliner et al. 1999). Roughly illustrated
in Figure 1, SA-CIRCA is designed to control
systems interacting with adversarial environments
that pose hard real-time deadlines: that is, do-
mains in which it is possible to incur catastrophic
failures by not acting quickly enough. For the
purposes of this discussion, the important point
is to understand the roles of the Adaptive Mis-
sion Planner (AMP) and the Controller Synthesis
Module (CSM).

The basic idea is that the AMP conducts long-
term, highly abstract planning and control of the
overall mission of the system, and directs the CSM

to develop suitable reactive controllers for differ-



Subgoals,
Feedback Data Problem Configurations

Controller
Synthesis
Module

State Space
Planner

Reactive Plans

T'me <‘;> The World
Subsystem

Figure 1: Within SA-CIRCA, the AMP and

CSM engage in a negotiation process

Feedback Data

to derive the best plans using the
available deliberation and reaction re-
sources.

ent phases of the mission. For example, an un-
inhabited combat aerial vehicle (UCAV) mission
may consist of ingress, attack, and egress phases
which each require different reactive control plans
to adjust the system’s behavior in response to dif-
ferent types of threats and failures. The AMP for-
mulates problem configurations for each of these
phases, and asks the CSM to generate plans that
can guarantee to avoid failure and achieve the
intermediate goals. In the UCAV example, the
ingress phase problem configuration might spec-
ify the types of threats expected along the ingress
route (potential failures) and the endpoint (goal)
of the ingress. The CSM contains a different sort
of planner: for each phase, it tries to build a
time-constrained reactive plan that is guaranteed
to preserve system safety (while achieving other
goals) by accounting for the environment, nonde-

terminism, and external adversarial agents.

We designed SA-CIRCA with the assumption
that its application domains will be overcon-
strained; that is, the system will not always be
able to guarantee that it will both keep the sys-
tem safe (avoid catastrophic failures) and achieve
all the goals. In overconstrained situations, we
want SA-CIRCA to “self-adapt” by automatically
deciding on appropriate tradeoffs between safety
and goal-achieving behavior. For example, in the
UCAYV application we want SA-CIRCA to recog-
nize that in some situations it may not be able
to guarantee responses to all the possible types of
threats (e.g., different surface-to-air missiles) and
so it should account for only the most-probable
types, building plans that have a non-zero risk
but still achieve the overall goals of attacking some

target.

To that end, we are developing a broad array
of methods that the AMP can use to adjust and
trade off the structure, goals, and safety concerns
of the problem configurations sent to the CSM.
This behavior characterizes the fundamental dif-

ference between the AMP and CSM. The CSM



does not make performance tradeoffs, it tries to
build a controller that preserves safety against all
the threats it is told about, and meets all the goals
it is given. The AMP makes tradeoffs, altering
the CSM problem configurations when the CSM is
not successful. The AMP can reduce the number
of goals the CSM is pursuing, reduce the threat
possibilities the CSM must be concerned with, or
perform a wide variety of more subtle modifica-
tions to the CSM problem configurations to make
them easier or harder to solve.

To guide the application of these tradeoff meth-
ods, the CSM must provide useful feedback to the
AMP. In the current implementation, the CSM
either succeeds or fails, but no additional mean-
ingful feedback data is provided. This abstract
is meant to describe some concepts for improved
CSM feedback, and their utility both for mak-
ing better automatic tradeoffs and for simplifying

user-level debugging of planning models.

Planner Feedback

There are several possible results of running the

CSM on a particular problem configuration:

Complete Success — The CSM has success-
fully built and scheduled a reactive control plan
that ensures safety and also achieves all of the
goals. Note that in this situation it may still
be useful to get feedback more significant than
simply “success!” Telling the AMP how diffi-
cult the problem was can help the AMP opti-
mize the allocation of reactive resources to the
overall mission. The AMP may have initially
posed a simplified problem configuration to es-
tablish a baseline, and feedback on the level of
problem difficulty may help in maximizing the
complexity of the next, revised configuration.
For example, suppose the AMP has submitted
a problem configuration for the entire ingress
phase accounting for both ship-to-air threats
and ground-to-air threats, since the ingress path

flies over a littoral region before going “feet dry.”

Furthermore, suppose that the SSP was unable
to build a safety-preserving plan for that full-
complexity configuration, so the AMP has cho-
sen to eliminate the lowest-probability threats
(say, the ship-to-air missiles). This simplified
configuration results in a successful plan, and
the AMP can be satisfied with that. However,
it might also get feedback information from the
SSP showing that the plan now spends a dis-
proportionate amount of effort throughout the
ingress phase worrying about threats that are
only present in the later, over-land part of the
phase. This could trigger an AMP heuristic
suggesting that the ingress phase be split into
two separate phases, one over land and one over
water. The resulting sequence of two smaller,
phase-specific plans may yield a much higher
probability of mission success. Note that while
this example results in a phase partition relying
on geometric characteristics, the concept itself
is not tied to geometry or other domain-specific
characteristics; the AMP can divide the problem
space along any dimensions or feature values it
chooses.

Partial Success — The CSM has built and
scheduled a reactive control plan that ensures
safety, but is not capable of achieving all of the
goals. Again, feedback can help the AMP assess
whether additional goals or complexity can be
added to the problem.

Planning Failure — The SSP has examined
the given problem and found an unresolvable
failure; it cannot find a plan that will guarantee
to avoid all of the possible failures. Feedback
will help decide what types of tradeoffs should
be made.

Scheduling Failure — Although the SSP was
able to find a safety-preserving plan, the CSM
Scheduler module was unable to schedule the
planned reactions to meet all of the specified
time constraints. Feedback about this type of

failure can point to specific types of problem



modifications (such as relaxing worst-case tim-
ing concerns).

Timeout Failure — Either during the planning
phase or scheduling phase, the CSM ran out of
time for computing a controller, and no finished
product was returned. Feedback in this situ-
ation can help the AMP understand the root
cause of the excess problem complexity that de-

feated the CSM.

In addition to categorizing its results into these
scenarios, the CSM should provide additional
feedback to guide problem configuration adjust-
ments. To date, we have identified the following
types of feedback as feasible and potentially useful
to the AMP.

Chokepoints — A chokepoint or bottleneck
structure in the state space is a planned ac-
tion that leads between two regions of state
space having different characteristics (i.e., dif-
ferent likely threats). This structure indicates
that breaking the single current problem con-
figuration into two separate phases (with differ-
ent problem configurations) may help make the
smaller phases easier. Our research teammates
at the University of Michigan are currently in-
vestigating ways of identifying these structures
in SSP plans.

Difficult Threats — A single threat that oc-
curs repeatedly throughout a region of the state
space may make the problem difficult or infea-
sible. If the SSP can identify which threats
are most difficult to handle, the AMP can use
this information to guide restructuring of the
phases, perhaps to avoid these particularly dif-
ficult threats entirely.

Schedulability Culprits — If the SSP builds a
safety-preserving state-space plan but the reac-
tions it requires cannot all be scheduled to exe-
cute within their timing constraints, the Sched-
uler may be able to provide general feedback

about the level of overutilization (McVey et al.

1997). In addition, the Scheduler may be able
to identify specific individual planned reactions
or small sets of reactions that are placed under
such tight time bounds that they bear primary
responsibility for the inability to build a sched-

ule.

As noted earlier, these types of feedback should
be useful both for on-line self-adaptation and for
helping the user (application engineer) debug do-
main descriptions during the off-line knowledge

acquisition process.

Related Work

The notion that a planner must provide complex
and useful feedback is relatively new; most plan-
ning work remains situated in fully-autonomous,
non-adaptive settings. A notable exception is the
work on mixed-initiative planning, which focuses
on tying automatic planning to human-generated
goals, and collaboratively making decisions in
which humans remain involved. Mixed-initiative
plan generation requires an ability to solve cer-
tain aspects of the planning problem automati-
cally, while deferring other functions to the user.
Complex query/response dialogue abilities allow
the planner to interact with the user to clearly
establish intent and mutual understanding (Allen
1983). Informative feedback from the planner to
the human is essential to the mixed-initiative plan-
ning process. This suggests that results and ap-
proaches from mixed-initiative planning may map
directly to our problems of AMP/CSP collabo-
rative planning. And, while originally conceived
of as useful for building plans collaboratively, the
mixed-initiative concepts may be equally useful for
acquiring correct planning domain models collab-

oratively.

References

Allen, J. 1983. Recognizing intentions from nat-
ural language utterances. In Brady, J. M., and
Berwick, R. C., eds., Computational Models of
Discourse. Cambridge, Mass.: M. 1. T. Press.



McVey, C.; Durfee, E. H.; Atkins, E. M.; and
Shin, K. G. 1997. Development of iterative real-
time scheduler to planner feedback. In Proc. Int’l
Joint Conf. on Artificial Intelligence.

Musliner, D. J.; Goldman, R. P.; Pelican, M. J.;
and Krebsbach, K. D. 1999. Self-adaptive soft-
ware for hard real-time environments. IFEFE In-
telligent Systems 14(4):23-29.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G.
1993. CIRCA: a cooperative intelligent real-time
control architecture. IFEF Trans. Systems, Man,
and Cybernetics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G.
1995. World modeling for the dynamic construc-
tion of real-time control plans. Artificial Intelli-
gence T4(1):83-127.



