
Flexibly Integrating Deliberation and Execution in Decision-Theoretic Agents
David J. Musliner, Jim Carciofini

Honeywell Laboratories
{david.musliner,jim.carciofini}@honeywell.com

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Edmund H. Durfee, Jianhui Wu
University of Michigan, Ann Arbor, MI

{durfee,jianhuiw}@umich.edu

Mark S. Boddy
Adventium Labs, Minneapolis, MN

mark.boddy@adventiumlabs.org

Abstract

We are developing software agents that plan, schedule, and
coordinate complex behavior in uncertain environments by
reasoning about dynamically-constructed Markov Decision
Problems (MDPs). What makes the work we present here
different from traditional MDP-based agent systems is that
an agent in our system might lack the time and/or knowl-
edge to build its complete MDP and corresponding optimal
policy prior to when it must begin execution. We have de-
veloped several new techniques to handle this system-level
embedding in a real-time environment while retaining the ad-
vantages of decision-theoretic reasoning. In this paper, we
describe how our agent architecture smoothly combines dy-
namic expansion and solution of the (partial) MDP models
with real-time execution of the policies being developed. This
combination is very flexible, allowing the agent to deliberate
whenever possible and leverage that deliberation in its near-
term decisions. The combination is also synergistic: infor-
mation about the asynchronous execution of tasks and their
outcomes allows the agent to prune its deliberation about fu-
ture possibilities. As a result, the agent can self-adapt to
dynamically-arriving problems with wide variations in delib-
eration time, both before and during policy execution.

Introduction
We are developing distributed teams of embedded software
agents that coordinate their behaviors dynamically by rea-
soning about complex, hierarchical, distributed task mod-
els. These agents may be used to coordinate teams of hu-
mans or autonomous systems engaged in a wide variety of
complex real-time coordinated activities (e.g., search-and-
rescue, military operations, refinery control, distributed web
services). The agents reason about task models expressed
in the C-TÆMS language, which includes explicit uncer-
tainty about the durations and outcomes of tasks. Our agents
reason explicitly about this uncertainty by each casting its
local planning and scheduling problem as the solution to a
Markov Decision Problem (MDP).

The agents operate in a time-constrained environment
where each generally cannot build its entire MDP and corre-
sponding action policy before it must begin executing tasks.
Furthermore, an agent’s goals and task models can change
on the fly, and it must dynamically adapt its behavior ac-
cordingly. In this paper, we describe how our agent architec-
ture smoothly combines continuous expansion and solution

of the (partial) MDP models with real-time execution of the
policies being developed. This combination is very flexible,
allowing the agent to deliberate not only before but during
execution, leveraging its ongoing deliberation to improveits
near-term decisions. In addition, the agent can use informa-
tion about the outcomes of tasks that it had previously de-
cided to execute in order to prune from consideration state
trajectories that are now impossible. As a result, the agent
can self-adapt to problems with wide variations in delibera-
tion time both before and during execution.

In the next section we briefly introduce the C-TÆMS task
modeling language and the associated simulation environ-
ment that define the problems and real-time execution do-
mains our agents inhabit. C-TÆMS task models can be in-
terpreted as a relatively compact representation for a large
multi-agent MDP state space. In the following section,
we introduce our first contribution, “Informed Unrolling,”
which is a technique for dynamically guiding the anytime
construction of this MDP from the C-TÆMS model. This
technique is related to prior work on anytime MDP solving,
but is particularly tailored to the requirements (and advan-
tages) of operating in a real-time execution environment. We
then discuss the interaction between the real-time execution
of the (partial) MDP policy and the deliberation processing
that is continuing to extend and revise the underlying MDP
model. We conclude with a discussion of system-level re-
sults showing how the resulting agent can use the available
reasoning time to its best advantage while also incorporating
information from ongoing execution of its partial policies.

C-TÆMS: Multi-Agent Probabilistic Task
Models

The C-TÆMS language (Boddyet al. 2005) represents
multi-agent hierarchical tasks with stochastic outcomes and
complex hard and soft interactions. Unlike other hierarchi-
cal task representations, C-TÆMS emphasizes complex rea-
soning about the utilities of tasks, rather than emphasizing
interactions between agents and the state of their environ-
ment.

C-TÆMS permits a modeler to describe hierarchically-
structured tasks executed by multiple agents. A C-TÆMS
task network hasnodesrepresentingtasks(complex actions)
andmethods(primitives). Nodes are temporally extended:

they have durations (which may vary probabilistically), and
may be constrained by release times (earliest possible starts)
and deadlines. Method executions that violate the temporal
constraints yield zero quality (and are said to havefailed).
At any time, each C-TÆMS agent can be executing at most
one of its methods, and no method can be executed more
than once.

A C-TÆMS model is a discrete stochastic model: meth-
ods have multiple possible outcomes. Outcomes dictate the
durationof the method (an integer greater than zero) and its
resultingquality (effectively a non-normalized utility mea-
sure).

Every task in the hierarchy has associated with it aquality
accumulation function(QAF) that describes how the quality
of its children is aggregated up the hierarchy. The QAFs
combine both logical constraints on subtask execution and
how quality accumulates. For example, a :MIN QAF spec-
ifies that all subtasks must be executed and must achieve
some non-zero quality in order for the task itself to achieve
non-zero quality, and the quality it achieves is equal to the
minimum achieved by its subtasks. The :SYNCSUM QAF
is an even more interesting case. Designed to capture one
form of synchronization across agents, a :SYNCSUM task
achieves quality that is the sum of all of its subtasks that
start at the same time the earliest subtask starts. Any sub-
tasks that start after the first one(s) cannot contribute quality
to the parent task.

The quality of a given execution of a C-TÆMS task net-
work is the quality the execution assigns to the (unique) root
node of the task network. C-TÆMS task networks are re-
quired to have deadlines on their root nodes, so the notion of
the end of a trace is well-defined.

Traditional planning languages model interactions be-
tween agents and the state of the environment through pre-
conditions and postconditions. In contrast, C-TÆMS does
not model environmental state change at all: the only thing
that changes state is the task network. Without a notion of
environment state, in C-TÆMS task interactions are mod-
eled bynon-local effect(NLE) links indicating inter-node
relationships such as enablement, disablement, facilitation,
and hindrance.

Figure 1 illustrates a simple version of a two-agent
hostage-rescue scenario. The whole diagram shows a global
“objective” view of the problem, capturing primitive meth-
ods that can be executed by different agents (A and B). The
COORDINATORs agents arenot given this view. Instead,
each is given a (typically) incomplete “subjective” view cor-
responding to what that individual agent would be aware of
in the overall problem. The subjective view specifies a sub-
set of the overall C-TÆMS problem, corresponding to the
parts of the problem that the local agent can directly con-
tribute to (e.g., a method the agent can execute or can enable
for another agent) or that the local agent is directly affected
by (e.g., a task that another agent can execute to enable one
of the local agent’s tasks). In Figure 1, the unshaded boxes
indicate the subjective view of agent-A, who can perform
the primitive methods Move-into-Position-A and Engage-A.
The “enable” link indicates a non-local effect dictating that
the Move-into-Position-A method must be completed suc-

cessfully before the agent can begin the Engage-A method.
The diagram also illustrates that methods may have stochas-
tic expected outcomes; for example, agent-B’s Move-into-
Position-B method has a 40% chance of taking 25 time units
and a 60% chance of taking 35 time units. The :SYNCSUM
QAF on the Engage task encourages the agents to perform
their subtasks starting at the same time (to retain the element
of surprise).

One of the defining features of C-TÆMS problems is the
degree to which the agents areembedded and online, mean-
ing that the time required for deliberation takes time in the
real (or simulated) world of execution, and that the situation
can change during execution in ways that are beyond the
agents’ control and that require replanning. In addition to
the modeled uncertainty exemplified above, C-TÆMS prob-
lems can also include dynamically-arriving task hierarchies
which are presented to the executing agents during a sce-
nario, while they are already executing other tasks. New
C-TÆMS task models may cause an agent to abort its on-
going tasks, replan in part or whole, or do nothing differ-
ent. Similarly, C-TÆMS can express dynamically-arriving
changes to existing model characteristics (e.g., the deadline
of a node may change after it has already been reasoned
about). Robustly handling all these forms of real-time en-
vironmental dynamics and uncertainty is a key requirement
for our agents.

Partial MDPs: “Informed Unrolling”
We refer to the process of converting a C-TÆMS problem
into an MDP problem as “unrolling,” because it involves
projecting forward from an initial state (where no meth-
ods have been executed) to imagine future possible states
of the C-TÆMS network in which some methods have been
chosen for execution at particular times and have received
particular outcomes. The core unrolling algorithm is thus
a simple state-space enumeration process where an MDP
state is expanded by creating the successor states that re-
sult from each of the possible action choices and their out-
comes. These successor states are added to anopenlistof
un-expanded states, and the process ideally continues until
the openlist is empty and the full reachable MDP state space
has been enumerated.

Since full enumeration of even single-agent C-TÆMS
MDPs is often impractical, we have developed a technique
for heuristically-guiding the enumeration of the reachable
MDP state space to include in the MDP the states most rel-
evant for finding the optimal policy. Ourinformed unroller
(IU) algorithm prioritizes (sorts) the openlist of states wait-
ing to be unrolled based on an estimate of the likelihood that
the state would be encountered when executing the optimal
policy from the initial state.

One cannot determine the probability of reaching a state
without considering the policy followed by the agent in
previous states. Therefore, the IU intersperses policy-
formulation (using the Bellman backup algorithm) with un-
rolling. This means that we must be able to find an (approx-
imately) optimal policy for partial MDP state spaces, which
means we must have a heuristic to use to assign a quality
estimate to a current leaf node to represent the reward that

Quality: (20 1.0)
Duration: (25 0.4, 35 0.6)
Quality: (20 1.0)
Duration: (25 0.4, 35 0.6)

:SYNCSUM
:SUM

Quality: (20 1.0)
Duration: (25 0.4, 35 0.6)

Quality: (20 1.0)
Duration: (35 1.0)

Move-into-Position-A

Accomplish-Mission

Engage-A

:MAX

enables

Move-into-Position Engage

Engage-BMove-into-Position-B

enables

Figure 1: A simple C-TÆMS task network for two agents, illustrating some of the representation features. Some details have
been omitted for brevity.

would be gained if the agent were to reach that node and
execute an optimal policy from there. We have developed
a suite of alternative heuristics for estimating intermediate
state quality, since the problem of finding a good heuristic is
quite difficult (Wu & Durfee 2007).

One heuristic approach that often strikes a good balance
between computation time and accuracy is to do a greedy
forward search from the intermediate state to a terminal state
(at the deadline of the overall top-level task). The agent finds
the method to execute in the intermediate state that will yield
the best immediate next expected reward, and the finds the
best method from the most likely state that would be reached
by taking that method, and so on, to create in a greedy man-
ner a simple linear plan representing one possible good tra-
jectory to a terminal state. The utility of reaching that state
is then used for the estimated utility of the intermediate state
when computing the policy for the partially-unrolled space.

Because computing the probabilities of reaching the edge
states of the partially-unrolled MDP requires performing a
Bellman backup on that state space, sorting the openlist
(which can be quite large) for the IU can be an expensive
operation. Therefore we constrain when the openlist sort-
ing takes place by using an active meta-control function that
tries to decide when to start a sort (and the associated policy
derivation) based on an estimate of the expected sort time
and consideration of the upcoming real-time deadlines (e.g.,
the next time an action decision is required). This has the net
effect of sorting the openlist more often early in the search,
when focus is particularly important, and less often or never
as the space is unrolled farther and probability information
becomes both less discriminatory (because the probability
mass is distributed over a very large set of reachable edge
nodes) and focus becomes less critical (because the agent
has time to refine its model/policy before reaching those
states).

Early results from our evaluation of the IU algorithm
against a complete solution of (small) MDPs are promising.
For example, in Figure 2 we show a comparison of the per-
formance of the informed unroller against the complete un-
rolling process. In these small test problems, the informed
unroller is able to find a high-quality policy quickly and to

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000 10000 100000

E
xp

ec
te

d
qu

al
ity

Time (seconds)

Agent 1 (informed unroller)
Agent 2 (informed unroller)
Agent 3 (informed unroller)

Agent 1 (full unroll)
Agent 2 (full unroll)
Agent 3 (full unroll)

Figure 2: The Informed Unroller can often find near-
optimal policies much faster than building the
complete MDP.

return increasingly effective policies given more time. This
allows the IU-agent to flexibly trade off the quality and time-
liness of its policies.

The IU method is a special case of the find-and-revise al-
gorithm schema (Bonet & Geffner 2006) (which is a gen-
eralization of algorithms such asLAO∗ (Hansen & Zil-
berstein 2001)). These algorithms use knowledge of the
initial state(s) and heuristics to generate a state subspace
from which a policy can be extracted. Our technique dif-
fers from the general case, and its instances, in substantial
ways.LAO∗ generates a state subspace from which the op-
timal policy can be provably derived. The IU, on the other
hand, executes online, and might lack enough time to enu-
merate such a state subspace even if it knew exactly which
states to include. The IU is an anytime algorithm and is inte-
grated into an execution environment, unlikeLAO∗, which
runs offline. For this reason, the IU makes no claims about
policy optimality; indeed, it is not even guaranteed to gener-
ate a closed policy.

The general find-and-revise algorithm family can provide

guarantees weaker than those ofLAO
∗, but those guaran-

tees rely on having an admissible heuristic value function
for states that have not been fully explored. However, even
if we had an admissible heuristic, it is not at all clear that the
IU should use it. An admissible heuristic will tend to push
the policy expansion to explore states where it ispossible
that the optimum will be found, in order that we not miss the
optimum. However, the IU is operating in a time-pressured
domain. So we should not necessarily be encouraging the
system to move toward promising unexplored areas — that
will tend to leave the agent with a policy that is broad but
shallow, and thus make it more likely that it will “fall off
policy” during execution. Instead of admissibility, we must
find a heuristic function that will cause the agent to tend to
build policies that trade off considerations of optimal choice
against completeness/robustness of the policy. It is possible
that this heuristic should be time-dependent — as the agent
runs out of time for policy development, the IU’s heuristic
should focus more on robustness and less on optimality.

Executing the MDP Policy
Once a partial MDP policy has been derived, the system is
ready to begin executing that policy as necessary. Problems
are posed to the system with a limited amount of delibera-
tion time before the first method can be executed (typically,
20 seconds to 5 minutes). Each time the IU algorithm per-
forms an openlist sort, it recomputes the optimal policy for
the larger state space (to drive the determination of the prob-
abilities for leaf nodes in the partial MDP based on that pol-
icy), so as soon as the first openlist sort has completed, the
agent is ready to execute its current best policy. Each time
the openlist is sorted, the current best policy is overwritten.

To execute the policy, the agent keeps track of the current
state in the MDP that best represents what has happened
so far in the world outside the agent (currently, a simula-
tion). Beginning with the initial state, in which no methods
have been executed, the system chooses to execute a method
based on the current best policy, choosing the method that
leads to the state with the highest expected utility.

Once it has started a method, the executive listens for in-
formation from the (simulated) environment telling it what
outcome the method achieved. The executive determines,
from that information, which transition in its MDP was actu-
ally traversed, and so what its new current-state is. The agent
consults its current best policy to select the action to take
in that state, and this process repeats as long as the agent’s
MDP is sufficiently complete and correct, in that the agent
has been able to anticipate and plan for each state by the
time the state is reached. Unfortunately, this is not always
the case.

The MDP might not be sufficiently complete, because the
informed unroller is always fighting against time. As exe-
cution progresses, the agent can “catch up” to the edges of
the unrolled space, and so the executive can reach a state
that the IU has not yet unrolled, or a state that has been un-
rolled but was not in the MDP during the most recent policy-
generation and thus does not have an action planned for it.
When this happens, the agent can no longer follow its pol-

icy; it falls “off-policy” and enters an off-policy execution
mode, as will be described shortly.

The MDP might not be sufficiently correct if the local C-
TÆMSmodel used by the IU is incomplete because it lacks
information about all the possible non-local effects (NLEs)
of other agents. For example, a method may befacilitated
by another method, either done locally or by another agent.
If the source task of the facilitation earns quality before the
target method is executed, then the method’s outcome will
not follow its normal modeled outcome behavior, but will
instead be both faster and of higher quality, depending on
the quality achieved at the NLE source.

For methods that are facilitated by purely local (same-
agent) tasks, it is possible to enumerate all the possible fa-
cilitated outcome values and thus build a complete MDP
through which the executive can track precisely. More gen-
erally, for distributed problems and problems that have not
been unrolled entirely, an agent might receive back from the
(simulated) environment information about the method that
it is executing that does not match any of the MDP tran-
sitions associated with the method. For example, suppose
that a method is facilitated by a non-local method and this
results in an outcome that is 10% faster and 10% higher-
quality than the un-facilitated method can achieve. If the
agent has no specific model of this facilitation, its MDP will
not contain states with those improved values, and the ex-
ecutive’s state-tracker could fall into an off-policy execution
mode.

To enable agents to remain on-policy through such events,
our executive tolerates some amount of mismatch during
state tracking when method outcomes are better (higher
quality and/or faster) than expected. When an exact tran-
sition cannot be found, the executive tracks to the modeled
state that is closest in time and quality to what occurred. We
say in this case that the agentwarps to a nearby modeled
state, and then follows its policy as if that warped-to state
were the real state. Because the time at which the warped-to
state was expected to be reached might be later than the cur-
rent time, the warping process can include the insertion of a
no-op (WAIT) method until the times align. From that point
on, the MDP will have a feasible, if imperfect, set of ex-
pectations, relying only on lower expected quality than that
which was actually achieved.

There are many situations in which even this warping be-
havior is not sufficient to keep the agent on-policy, and the
executive realizes that the MDP it has unrolled and planned
for is no longer well aligned with the environment. For ex-
ample, the C-TÆMS language allowsmeta-TÆMSmodel
changes during execution, including changes to temporal
constraints like deadlines, changes to expected outcome dis-
tributions, and even the arrival of entirely new portions of
the problem domain (new hierarchical tasks, new methods).
When ameta-TÆMSevent occurs in the midst of execution,
the agent is in a tough situation: using its current MDP could
be no longer appropriate, but stopping taking actions while
it computes a new MDP could cause it to fail to take criti-
cal actions at necessary times. Our agent has mechanisms in
place that permit it to continue executing its old policy while
deliberating about the new policy that it should follow, and

then later switching from the old to the new at an opportune
time. There are many challenges in doing this correctly, and
we leave the details of this process to a future paper.

Despite the efforts of the IU to generate useful policies
quickly, and of the executive to follow the current best policy
flexibly, an agent can sometimes fall off-policy. When that
happens, the agent falls into one of several off-policy modes
(which one is currently based on a user-settable flag). One of
the most effective off-policy modes is to use the same greedy
heuristic technique as is used to compute the heuristic value
to assign to an edge state. That is, the executive looks at the
expected next states given each of the currently applicable
methods, and selects the method that will reach immediate
successor states with the highest-expected utilities.

Synergy Between Execution and Deliberation
A crucial advantage of our approach to executing the par-
tial MDP’s policy while we continue to unroll more of the
MDP is that not only can an agent use the results of deliber-
ation (improving the policy) to inform execution (choosing
the next method to execute), but it can also use the results
of execution to inform deliberation. Recall that an agent can
fall off-policy when execution catches up with the edges of
the unrolled state space, such that the policy does not cover
the state reached. Execution can generally catch up because
of the branching factors involved: the width of the expanded
state space keeps growing exponentially given the branching
due to the method choices and their stochastic outcomes.

But once execution has begun, and the actual outcomes
of executed methods are known, then the space of reachable
states can be narrowed down. For example, as soon as the
system has chosen to execute a particular method in a state,
no other choice is possible. The other branches of the MDP
out of the current state can be pruned, and huge portions of
the subsequent state space may become unreachable.

There are three kinds of pruning opportunities that occur
during execution of a single-agent problem:

• Action choices —As above, when the executive chooses
to start a method in a state, all other actions (method
choices or WAITs) are no longer possible, so all their tran-
sitions are removed from the MDP.

• Outcomes that occur —When the executive learns that a
method has completed at a certain time and yielded a cer-
tain quality, that information is used to update the current
state in the MDP. Only states reachable from the current
state are still of interest to the deliberation process. This
type of pruning can be easily accomplished either by mov-
ing the initial state of the entire MDP to the new current
state of the agent, or by pruning all other transitions out
of the prior state.

• Outcomes that do not occur —When the executive gets
a pulse message indicating that a new discrete time tick is
starting but the currently-executing method did not com-
plete on the prior tick, this itself can provide pruning in-
formation. If one of the outcomes of the executing method
should have finished in the prior tick, then the fact that it
did not finish is sufficient to prune that outcome’s transi-
tion from the MDP.

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 r

ea
ch

ab
le

 s
ta

te
s

Time

Openlist states
Expanded (closed) states

Figure 3: Execution-time state-space pruning periodically
reduces the reachable state-space dramatically,
while the Informed Unroller continually ex-
pands the projection of future states.

Because the executive runs asynchronously from the de-
liberation engine (MDP unroller), the execution-based prun-
ing must be implemented carefully to avoid corrupting the
evolving MDP model. In our case, as the executive encoun-
ters the pruning opportunities above, it queues up a list of
transitions to be pruned. At the top of the MDP unrolling
loop, when the MDP model is stable, the queued pruning
opportunities are processed to remove transitions from the
MDP. If any prunes are made, a topological sort algorithm is
run on the MDP, deriving the revised reachable state space,
the new openlist, and the topology for Bellman backup.
Then the openlist popping and state expansion proceeds as
usual.

Finally, it should be noted that even whenmeta-TÆMS
events occur, pruning can still be exploited. When the MDP
is being formed for the improved model of the agent’s tasks,
the IU can begin with the state that has actually been reached
so far. Then, as new states are reached and methods are
chosen from the current policy, the effects of these choices
can be mapped across to isomorphic components of the new
model being unrolled and reasoned about. In this way, an
effective policy for the new model can be more rapidly pro-
duced and swapped in.

Results
By integrating execution and deliberation over a
continuously-expanding partial MDP policy, our CO-
ORDINATOR agents are able to take efficient advantage of
all the deliberation time they are given. When the domain
offers a relatively long deliberation period, the agents may
unroll a very extensive MDP, sometimes even completely
considering all possible futures and generating a complete
optimal policy (modulo possible imperfections in the
inter-agent agreements). When less time is available, they
generate intermediate partial policies that are approximately
optimal for the state space considered so far. And, when
execution-time information can reduce their uncertainty

about possible future states, the agents aggressively prune
the partial MDP model, focusing their deliberation only on
reachable future states.

For example, Figure 3 illustrates the MDP size over time
for a single agent operating in a domain where the first
method could be started after 140 seconds, and thereafter
the different methods being selected took 3 to 10 seconds to
execute. Adapting to the long deliberation period at the start,
the agent unrolled a state space of nearly 100,000 states be-
fore it could execute its first action. That first action choice
caused a huge pruning effect, reducing the explored reach-
able state space to only a few thousand states. Then, as the
first method executed for a few seconds, the unroller ex-
panded its projections about the future, made another action
choice which reduced the reachable state space, etc. Sev-
eral times in this problem the domain made it impossible to
run any methods (e.g., from time 200 to 240) and the agent
used that time to dramatically expand its future planned state
space. So the agent dynamically adapts it deliberation to the
available time, and uses any conclusions of its deliberations
immediately during the concurrent problem execution.

Combined with execution-time state warping, these fea-
tures enable our agents to flexibly self-adapt to domains with
widely varying real-time responsiveness requirements and
extremely large possible state spaces, remaining in control
and on-policy (within the portion of the state space they have
considered) despite the uncertainty of their actions.

Future Work
In this paper, we concentrated on the deliberation and execu-
tion activities within an agent, and how they can work off of
each other to the agent’s benefit, but there are many other is-
sues that arise in developing techniques for the kinds of com-
plex, realistic applications that we are facing. Some of these
deal with making the deliberation more far-sighted; a major
benefit of MDPs is modeling how downstream eventualities
should influence earlier decisions, and that benefit is com-
promised in our time-constrained problems where the MDP
can only be partially unrolled. Strategies such as phasing
(Wu & Durfee 2007) might help address these limitations.

Similarly, we have not gone into detail in this paper about
how these techniques need to be adjusted for multiagent con-
texts, such that the decisions made about what portions of
the MDPs to deliberate about and where to exercise execu-
tion flexibility are made in a coordinated manner. These can
be especially important if we find other ways to keep the
agent on-policy despite minor unmodeled perturbations in
outcomes by using even more flexible warping, mapping the
actual current state to an unrolled state that is not a strictly
admissible approximation. This would allow the agent to
remain on-policy and within its partially-optimized plan,in-
stead of falling off-policy and operating in a myopic/greedy
mode, but if different agents exercise flexibility differently,
the policies that they end up following might be mismatched
and their collective performance might suffer.

In summary, while MDP solution methods have been
studied quite widely, there is very little literature on mak-
ing that solution process real-time and responsive to an exe-
cuting, uncertain, changing environment. As MDP-solution

techniques scale up to handle problems of practical size
(e.g., military unit planning and coordination), the problems
of real-time performance and execution will be increasingly
in the spotlight. Our IU-agent is breaking new ground in
self-adaptive deliberation and integration with execution, in
the context of highly uncertain and variable task models.

Acknowledgments
This material is based upon work supported by the
DARPA/IPTO COORDINATORs program and the Air Force
Research Laboratory under Contract No. FA8750–05–C–
0030. Any opinions, findings and conclusions, or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of DARPA, the
U.S. Government, or the Air Force Research Laboratory.

References
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R. P.; and
Vincent, R. 2005. C-TÆMS language specification. Un-
published; available from this paper’s authors.

Bonet, B., and Geffner, H. 2006. Learning depth-first
search: A unified approach to heuristic search in determin-
istic and non-deterministic settings, and its applicationto
MDPs. In Long, D.; Smith, S. F.; Borrajo, D.; and Mc-
Cluskey, L., eds.,Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling,
142–151.

Hansen, E. A., and Zilberstein, S. 2001. LAO: a heuristic
search algorithm that finds solutions with loops.Artificial
Intelligence129(1-2):35–62.

Wu, J., and Durfee, E. H. 2007. Solving large taems prob-
lems efficiently by selective exploration and decomposi-
tion. In Proceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS07).

